
Contemporary Mathematics

The Space of Free Loops on a Real Projective Space

Sven Bauer, Michael Crabb, and Mauro Spreafico

Abstract. Methods from fibrewise topology are used to give a stable splitting
of the space of free loops on a real projective space as a wedge of Thom spaces.
This splitting is equivariant with respect to the action of the isometry group.

1. Introduction

Suppose that V 6= 0 is a finite-dimensional real vector space with an inner
product. Let LP (V ) denote the space of continuous free loops on the projective
space P (V ). The action of the orthogonal group O(V ) on V induces an action of
the projective orthogonal group PO(V ) on P (V ). Our main result is a PO(V )-
equivariant stable splitting of LP (V ).

To describe the stable summands let us write O(R2, V ) for the Stiefel manifold
of orthogonal 2-frames b : R

2 → V in V and PO(R2, V ) for the projective Stiefel
manifold O(R2, V )/{±1}. The vector bundle over PO(R2, V ) with fibre at [b] the
orthogonal complement in V of b(R2) will be denoted by ζ.

Theorem 1.1. There is a PO(V )-equivariant stable homotopy equivalence

(

LP (V )
)

+
≃ P (V )+ ∨

∞
∨

l=1

PO(R2, V )(l−1)ζ .

Here, and throughout the paper, a subscript + stands for addition of a disjoint
basepoint, and the Thom space of a vector bundle ξ over a base B is denoted by Bξ.
The stable splitting is understood as a splitting of equivariant spectra. We shall
establish a more precise unstable splitting after one suspension in Proposition 3.1.

The methods of this paper are entirely homotopy-theoretic, but some geometric
remarks are in order. The space of continuous loops LP (V ) is homotopy equivalent
to the manifold M of smooth loops ω : S1 → P (V ). Consider the energy functional

E : M → R, E(ω) =
1

2

∫ 2π

0

‖ω′(θ)‖2dθ.

This is a Morse-Bott function with critical submanifolds Cl, l ∈ N, where C0 is
the space of constant loops and Cl, for l ≥ 1, is the space of closed geodesics of
multiplicity l (so of length πl). One can easily identify Cl with PO(R2, V ) for l ≥ 1.
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The negative bundle of Cl is 0 if l = 0 and corresponds to (l− 1)ζ if l ≥ 1. See, for
example, [9, Section 2] and [3].

The proof of Theorem 1.1 relies on an equivariant refinement of one of the main
results in [1]. In Section 2 we review some of the constructions in [1] and show that
they can be carried out equivariantly to obtain a stable splitting for the (based)
loop space of the projective space of a real vector space (Proposition 2.2). In the
next section we interpret LP (V ) as a fibrewise (based) loop space and deduce the
main theorem. The last section describes an O(V )-equivariant stable splitting of
the space LS(V ) of continuous free loops on the unit sphere S(V ) in V .

2. An equivariant fibrewise stable splitting for projective bundles

Let W be a finite-dimensional real vector space with an inner product. Writ-
ing [x] for the element of a projective space determined by a non-zero vector x,
we choose the point [1, 0] as basepoint in the projective space P (R ⊕ W ). It is
understood that O(W ) acts trivially on the one-dimensional space R. The space
P (R ⊕ W ) then has an induced O(W )-action.

Let l ∈ N and l ≥ 1. We define a map

γ̃l : S(W )l → ΩP (R ⊕ W )

by setting

γ̃l(x1, x2, . . . , xl)(t) =
[

cos(lπt), sin(lπt)xj

]

for (j − 1)/l ≤ t ≤ j/l.

The loop γ̃1(x) is a closed geodesic lifting to a great semi-circle on the sphere
S(R ⊕ W ) from (1, 0) through (0, x) to (−1, 0). The map γ̃l assigns to an l-
tuple of points (x1, x2, . . . , xl) a piecewise smooth geodesic whose pieces are re-
parameterized closed paths γ̃1(xj). In particular, if x1 = x2 = . . . = xl this gives a
closed geodesic of multiplicity l.

Let U be a codimension 1 subspace of W . Consider the embedding S(R⊕U) ⊆
R⊕U with trivial normal bundle R×S(R⊕U). The Pontrjagin-Thom construction
gives a map

(2.1) f : ΣU+ = (R ⊕ U)+ →
(

R × S(R ⊕ U)
)+

= ΣS(R ⊕ U)+,

where a superscript + is used for one-point compactification. This map f splits
the suspension of the stereographic projection S(R ⊕ U)+ → U+. Making the
appropriate identifications, we obtain maps

fk : Σ(kU)+ → Σ(S(R ⊕ U)k)+

by defining f1 = f and fk = (fk−1 ∧ id) ◦ (id∧ f) for k ≥ 2.
Viewing U as the tangent space at a point of the sphere S(W ), we now apply

this construction fibrewise to the tangent bundle TS(W ). We write T → S for the
tangent bundle TS(W ) → S(W ) for ease of notation and obtain fibrewise maps

ΣS(kT )+S → ΣS(S(R ⊕ T )k
S)+S

over S, where R stands for the one-dimensional real trivial bundle and the subscript
S indicates the appropriate fibrewise construction.

Collapsing the basepoint sections S to a point and identifying R ⊕ T with the
trivial bundle with fibre W gives maps

αk : Σ
(

S(W )kTS(W )
)

→ Σ(S(W )k+1)+

for k ≥ 1. Additionally we define α0 to be the identity on ΣS(W )+.
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Now define for l ≥ 1 the map

γl : Σ
(

S(W )l
)

+
→ Σ

(

ΩP (R ⊕ W )
)

+

to be (Σγ̃l)αl−1. Let γ0 be the suspension of the pointed map S0 → ΩP (R ⊕ W )+
that takes −1 to the constant loop t 7→ [1, 0]. Observe that the construction of the
γl is O(W )-equivariant.

Proposition 2.2. The map

γ = γ0 ∨
∞
∨

l=1

γl : ΣS0 ∨

∞
∨

l=1

Σ
(

S(W )(l−1)TS(W )
)

→ Σ
(

ΩP (R ⊕ W )
)

+

is an O(W )-equivariant homotopy equivalence.

Proof. We check first of all that the map γ is a non-equivariant homotopy
equivalence. There is nothing to do if W = 0.

If dimW = 1 the equivalence is clear. For the loop space is homotopically a
disjoint union of points indexed by the degree. The lth component of the wedge
corresponds to the points {l,−l}.

If dimW > 1 the loop space has two components Ω0 and Ω1 indexed by the
fundamental group π1(P (R ⊕ W )) = Z/2. The γl map into Σ(Ω0)+ or Σ(Ω1)+
according to whether l is even or odd. An integral homology calculation for each
component shows that γ is an equivalence. We refer to [1] for details.

By [6] (or [8]), for any compact Lie group G an equivariant map between two
G-CW-complexes (or G-ANRs respectively) is an equivariant homotopy equivalence
if it induces (ordinary) homotopy equivalences on the fixed point sets of all closed
subgroups of G. The spaces with which we are concerned all have the equivariant
homotopy type of O(W )-CW-complexes. Indeed, the sphere S(W ) and the project-
ive space P (R ⊕ W ) are O(W )-CW-complexes, and it follows from an equivariant
generalization in [11] of Milnor’s theorems on spaces having the homotopy type of
a CW-complex that the loop space ΩP (R⊕W ) has the equivariant homotopy type
of an O(W )-CW-complex. Alternatively, one can check that the spaces involved in
this proof are of the equivariant homotopy type of O(W )-ANRs.

It remains to show that γ induces equivalences on fixed point spaces of sub-
groups. Let K be a closed subgroup of O(W ). Then the fixed point subspace
P (R ⊕ W )K is a disjoint union of projective spaces

P (R ⊕ W )K = P (R ⊕ WK) ∐
∐

χ6=1

P (Wχ)

indexed by the characters χ : K → {1,−1}. The spaces Wχ are the χ-isotypical
summands of the K-representation W . Because a loop is fixed if and only if it is

pointwise fixed we have
(

ΩP (R⊕W )
)K

= Ω
(

P (R⊕WK)
)

. Since S(W )K = S(WK)

and because the fixed point space of TS(W ) is TS(WK), the fixed subspace of the
domain of γ is obtained by replacing W by WK . As all our constructions are
natural in W , the restriction of γ to K-fixed points is the corresponding map for
WK instead of W . So we have a homotopy equivalence on the K-fixed points, as
required to complete the proof. �

We obtain a fibrewise version of this proposition by using the Borel construc-
tion. Let G be a compact Lie group, and let ξ be a G-vector bundle over a com-
pact G-ENR B. Assume ξ has fibre W and let E be the associated G-principal
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O(W )-bundle. Then the fibrewise loop space ΩBP (R ⊕ ξ) of the projective bundle
E ×O(W ) P (R ⊕ W ) is equal to

ΩBP
(

E ×O(W ) (R ⊕ W )
)

= E ×O(W ) ΩP (R ⊕ W ).

Abbreviating the O(W )-equivariant homotopy equivalence γ from Proposition 2.2
to γ : X → Y , we obtain a G-equivariant fibrewise homotopy equivalence

E ×O(W ) X → E ×O(W ) Y.

Collapsing the basepoint sections yields a G-homotopy equivalence

(E ×O(W ) X)/B → (E ×O(W ) Y )/B

and so establishes the following corollary.

Corollary 2.3. Let G be a compact Lie group, and let ξ be a G-vector bundle

over a compact G-ENR B. Then there is a G-equivalence

Σ
(

ΩBP (R ⊕ ξ)
)

+
≃ ΣB+ ∨

∞
∨

l=1

Σ
(

S(ξ)(l−1)TBS(ξ)
)

,

where TBS(ξ) is the fibrewise tangent bundle of the unit sphere bundle S(ξ) of ξ. �

3. Splitting the space of free loops on a projective space

Consider the trivial bundle P (V ) × V → P (V ). There is a homeomorphism
from LP (V ) to the fibrewise loop space of the associated projective bundle:

LP (V )
≈
−→ ΩP (V )P

(

P (V ) × V
)

: ω 7→ (ω(0), ω).

Here, the basepoint in each fibre is given by the diagonal map. Thus the fibre
over L ∈ P (V ) is just P (V ) with basepoint L. When we make the canonical
identification

P (V ) = P (L∗ ⊗ V ) = P (L∗ ⊗ (L ⊕ L⊥)) = P (R ⊕ (L∗ ⊗ L⊥))

(given explicitly by the mapping [y, z] 7→ [x∗(y), x∗⊗z], where x∗ ∈ L∗ \{0}, y ∈ L,
and z ∈ L⊥), the basepoint L ∈ P (V ) corresponds to the usual basepoint [1, 0] in
P (R⊕ (L∗ ⊗L⊥)). Globally, this identifies P (P (V )× V ) with P (R⊕ (H∗ ⊗H⊥)),
where H is the canonical line bundle over P (V ). Recognizing H∗ ⊗ H⊥ as the
tangent bundle TP (V ) we have a PO(V )-equivariant homeomorphism LP (V ) ≈
ΩP (V )P (R ⊕ TP (V )).

Setting ξ = TP (V ) and G = PO(V ) in Corollary 2.3 gives:

Proposition 3.1. There is a PO(V )-equivariant homotopy equivalence

Σ
(

LP (V )
)

+
≃ ΣP (V )+ ∨

∞
∨

l=1

Σ
(

S
(

TP (V )
)(l−1)τ)

,

where τ is the fibrewise tangent bundle of S
(

TP (V )
)

→ P (V ). �

To complete the proof of Theorem 1.1 we need to see that τ over S
(

TP (V )
)

is the same as ζ over PO(R2, V ). The spaces O(R2, V ) and S
(

TS(V )
)

are easily

identified via the map b 7→
(

b(1, 0), b(0, 1)
)

. Taking the quotient modulo the action
of the group {±1} gives the required identification. �
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Remark 3.2. Suppose V has a complex structure, and let U(V ) be its unitary
group. Then the lth wedge summand, for l ≥ 1, in Proposition 3.1 has a stable
U(V )-equivariant decomposition

S
(

TP (V )
)(l−1)τ

≃ P (V )(l−1)η ∨P (V )lη,

where η is the pull-back of the tangent bundle of the complex projective space of V .
This can be seen by splitting TP (V ) as the sum of η and the trivial one-dimensional
bundle and using f , (2.1), to split S(R ⊕ η) over P (V ).

4. Free loops on spheres

Similar methods give a decomposition of the free loop space of the sphere. The
map γ in Proposition 2.2 restricts to an O(W )-equivalence

ΣS0 ∨

∞
∨

m=1

Σ
(

S(W )(2m−1)TS(W )
)

→ Σ
(

ΩS(R ⊕ W )
)

+
,

and the argument of Section 3 gives:

Theorem 4.1. There is an O(V )-equivariant stable homotopy equivalence

(

LS(V )
)

+
≃ S(V )+ ∨

∞
∨

m=1

O(R2, V )(2m−1)ζ .

�

Non-equivariantly there is a finer decomposition. Suppose V = R
2 ⊕U . As an

easy special case of Miller’s stable splitting of Stiefel manifolds (see [10]) we have

O(R2, V )+ ≃ S0 ∨ P (R2)H⊗U ∨ Σ(2U)+,

where H is the Hopf bundle over P (R2). Since ζ is stably trivial, the mth summand
for m ≥ 1 in Theorem 4.1 is stably

O(R2, V )(2m−1)ζ ≃
(

(2m− 1)U
)+

∨
(

(2m− 1)U
)+

∧ P (R2)H⊗U ∨Σ
(

(2m + 1)U
)+

.

The 0th summand is S(V )+ ≃ S0 ∨ ΣU+.
It is interesting to compare this decomposition with the Carlsson-Cohen split-

ting, [4],

(

LS(V )
)

+
≃ S0 ∨

∞
∨

n=1

(S1 ×Z/n nU)+,

where Z/n permutes the summands in nU cyclically. (See also [2] and [7].) For
n = 2m even the nth summand is

(

(2m − 1)U
)+

∧ P (R2)H⊗U .

However, for n = 2m − 1 odd it is a wedge

Σ
(

(2(m − 1) + 1)U
)+

∨
(

(2m − 1)U
)+

of two pieces coming from the (m − 1)st and mth summands in Theorem 4.1.



6 S. BAUER, M. C. CRABB, AND M. SPREAFICO

References

1. S. Bauer, M. C. Crabb, and M. Spreafico, The classifying space of the gauge group of an

SO(3)-bundle over S2, Proc. Roy. Soc. Edinburgh, to appear.
2. C.-F. Bödigheimer and I. Madsen, Homotopy quotients of mapping spaces and their stable

splitting, Quart. J. Math. Oxford 39 (1988), 401–409.
3. R. Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982), 331–358.
4. G. E. Carlsson and R. L. Cohen, The cyclic groups and the free loop space, Comment. Math.

Helv. 62 (1987), 423–449.
5. M. C. Crabb and I. M. James, Fibrewise homotopy theory, Springer, London, 1998.
6. T. tom Dieck, Transformation groups, Walter de Gruyter, Berlin, 1987.
7. N. Hingston, An equivariant model for the free loop space of SN , Amer. J. Math. 114 (1992),

139–155.
8. I. M. James and G. B. Segal, On equivariant homotopy type, Topology 17 (1978), 267–272.
9. W. Klingenberg, The space of closed curves on the sphere, Topology 7 (1968), 395–415.

10. H. Miller, Stable splittings of Stiefel manifolds, Topology 24 (1985), 411–419.
11. S. Waner, Equivariant homotopy theory and Milnor’s theorem, Trans. Amer. Math. Soc. 258

(1980), 351–368.

Department of Mathematical Sciences, King’s College, University of Aberdeen,
Aberdeen AB24 3UE, UK

E-mail address: s.bauer@maths.abdn.ac.uk

Department of Mathematical Sciences, King’s College, University of Aberdeen,
Aberdeen AB24 3UE, UK

E-mail address: m.crabb@maths.abdn.ac.uk

Dipartimento di Matematica e Applicazioni, Università di Milano / Bicocca, Via
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