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CHAPTER 1

Preliminaries

In this chapter we recall some classical constructions in homotopy theory, that
will be used without further comments in the following. Either explicit proofs or
detailed references are given. We will briefly review the definition and the main
properties of deformation retract and mapping cylinder, and in some more details
the definition of CW complexes, including cellular homology, and covering space in
the CW category.

1. Homotopy

Definition 1.1. If f, g : X → Y , then f is homotopic to g, written f ∼ g, if
there exists a map F : X × I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x), for
all x ∈ X.. The map F is called homotopy between f and g, sometimes written
f ∼F g.

Definition 1.2. A map f : X → Y is an homotopy equivalence if there
exists g : Y → X such that gf ∼ 1X and fg ∼ 1Y . We write X ∼ Y .

Definition 1.3. A space X is contractible if X ∼ ∗.

Definition 1.4. A space X is locally contractible if for every x ∈ X, each
neighborhood U of x contains an open neighborhood V of x that is contractible to x
in U .

Definition 1.5. Let A be a subspace of X. If f, g : X → Y , and f |A = g|A,
then f and g are homotopic relative to A, written f ∼ g rel A, if there exists an
homotopy F : X × I → Y such that F (x, 0) = f(x), F (x, 1) = g(x), for all x ∈ X,
and F (a, t) = f(a) = g(a) for all (a, t) ∈ A × I. The map F is called relative
homotopy between f and g, sometimes written f ∼F g rel A. In the particular
case where A is a single point, we say that f and g are based homotopic.

Definition 1.6. A map f : X → Y is an homotopy equivalence if there
exists g : Y → X such that gf ∼ 1X and fg ∼ 1Y . We write X ∼ Y , and we say
that X and Y are homotopically equivalent.

Definition 1.7. Let (X,A) and (Y,B) two topological pairs. We say that the
pair (X,A) is homotopic to the pair (Y,B) and we write (X,A) ∼ (Y,B), if they
are homotopic in the category of pairs (see ?). This means that there are maps of
pair f : (X,A) → (Y,B) and g : (Y,B) → (X,A), and homotopies of pairs F and
G, i.e. maps such that fg ∼F 1Y , keeping the image of B in B during the entire
homotopy, and gf ∼G 1X , keeping the image of A in A during the entire homotopy.
We aslo say in this case that (X,A) and (Y,B) are homotopically equivalent
pairs

3



4 1. PRELIMINARIES

It is clear that by taking A = B = ∅ the pair concepts reduce to the absolute
concepts.

Definition 1.8. Let A be a subspace of X, with inclusion i : A→ X. A map
r : X → A that is a left inverse of i (i.e. ri = 1A) is called a retraction. The
subspace A is called a retract of X.

Equivalently, A ⊆ X is a retract of X if the identity map 1A : A → A is
extendable to a map r : X → A.

Lemma 1.1. If X is Hausdorff, and A ⊆ X a retract of X, then A is closed in
X.

Definition 1.9. A retraction r : X → A, of a subspace A of X, is a defor-
mation retraction if ir is homotopic to the identity 1X : X → X. We say that
A is a deformation retract of X in this case.

Definition 1.10. A retraction r : X → A, of a subspace A of X, is a strong
deformation retraction if ir is homotopic to the identity 1X : X → X relatively
to A. This means that there exists an homotopy F : X × I → X such that

(1) F ( , 0) = 1X ,
(2) F ( , 1) = r,
(3) F (a, t) = a, for all a ∈ A.

We say that A is a strong deformation retract of X in this case.

It is easy to check that if A is a strong deformation retract of X, then the
retraction r : X → A is an homotopy equivalence, the homotopy inverse of which
is the inclusion map i : A→ X.

Definition 1.11. Let i : A → X be the inclusion of a closed subspace. Let
f : A→ Y be a map. The push out Y tfX is called the adjuntion or attachment
of X to Y by f . The relevant diagram is

A

f

��

i // X

f̄

��
Y

ī
// Y tf X

The map f : X → Y is called the attaching map of the adjunction, and the
map f̄ : X → Y tf X is called characteristic map of the adjunction.

Lemma 1.2. Let q : X t Y → X tf Y be the identification map appearing in
the definition of the push out. Then,

(1) Y is embedded as a closed subset, homeomorphic to Y , and q|Y is an
homeomorphism,

(2) X−A is embedded homeomorphically as an open subset, and q|X−A is an
homeomorphism.

Proof. [2] pg. 128. �

Lemma 1.3. Law of vertical composition of adjunctions: let A ⊂ X
closed, f : A→ B, g : B → C, then
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A

f

��

i // X

f̄

��
B

g

��

ī
// B tf X

ḡ

��
C // C tg (B tf X) ∼= C tgf X

Proof. [4] pg. 38. �

Lemma 1.4. Law of horizontal composition of adjunctions: let A ⊂ B
closed, B ⊂ X, closed, f : A→ Y , then

A

f

��

i // B
j //

f̄

��

X

��
Y

ī
// Y tf B

j̄
// (Y tf B) tf̄ X ∼= Y tf B

Proof. [4] pg. 38. �

Remark 1.1. Let Y be a subspace of Z and y0 ∈ Y . Then, Z/Y is a push out
of the inclusion Y → Z and the constant map Y → y0.

Definition 1.12. Let (X,x0) ∈ Top∗. The cylinder of X is the space Cyl(X) =
X × I. The cone of (X,x0) is the space

CX := (X × I)/(X × {0}).

The space X is embedded in CX as a closed subspace by the map

i :X → CX,

i :x 7→ [(1, x)].

Let j : X → X × I, taking x into (x, 0). Then, the cone CX is the adjunction
of X × I to x0 via the constant map cx0 , as in the following diagram:

X

cx0

��

j // X × I

c̄x0

��
x0

j̄
// x0 tcx0

X

Definition 1.13. Let f : X → Y . The mapping cylinder of f is the push
out space Mf := Y tf (X × I). The relevant diagram is

X

f

��

j // X × I

f̄

��
Y

j̄
// Mf := Y tf (X × I)

where j : X → X × I is the inclusion j(x) = (x, 0).

Definition 1.14. Let f : X → Y . The mapping cone of f is the push out
space Cf := X tf CX. The relevant diagram is
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X

f

��

j // CX

f̄

��
Y

j̄
// Cf := Y tf CX

where j : X → CX is the inclusion j(x) = [(x, 0)].

By definition the mapping cylinder of f : X → Y is the the quotient space

Mf =
(X × I) t Y
(x, 0) = f(x)

.

Let denote by q the identification map (X× I)tY →Mf . We denote the class
q(z) by [z], where z ∈ (X× I)tY . Note that j̄ = q|Y embeds Y homeomorphically
as a closed subset of Mf , and q|X×(0,1] embeds X × (0, 1] homeomorphically as an
open subset of Mf , we write q(X×{0}) = X and q(Y ) = Y . In particular, the map
i : X →Mf , i(x) = q(x, 1), is a homeomorphism of X onto the upper face X ×{1}
of Mf . To cut down on symbolism, we identify i(X) with X and j̄(Y ) with Y .

A pair of maps (g1, g2), g1 : X × I → Z, g2 : Y → Z, satisfying g1(x, 0) =
g2(f(x)), for each x ∈ X, determine a unique map

g : Mf → Z,

g :
{
q(x, t) 7→ g1(x, t)
q(y) 7→ g2(y).

The collapsing map p is defined by

p : Mf → Y,

p :
{
q(x, t) 7→ f(x)
q(y) 7→ y.

Lemma 1.5. For any given f : X → Y , the collapsing map p : Mf → Y is a
strong deformation retract. In particular, Y ∼Mf .

Proof. [2] pg. 369. �

Lemma 1.6. For any given f : X → Y , the inclusion i : X → Mf satisfies
pi = f , and is an homotopy equivalence if and only if f is an homotopy equivalence.

Proof. [2] pg. 317. �

The relevant commutative diagram is

X

f

�� i ""E
EEEEEEE

j // X × I

f̄

��
Y Mf

poo

where i = f̄ j.

Proposition 1.1. If f ∼ g : X → Y , then the pair (Mf , X) is homotopic to
the pair (Mf , Y ).

Proof. [2] pg. 370. �
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2. CW complexes

Definition 2.1. A space is called a topological cell, or simply a cell, of
dimension m if it is homeomorphic with Bm. It is called an open cell of dimension
m if it is homeomorphic with IntBm = Bm − ∂Bm. In each case the integer m is
uniquely determined by the space in question. Here Bm = {x ∈ Rm | |x| ≤ 1} is
the unit ball or unit disc of the Euclidean space.

For a given set J , let {Snj }j∈J be a set of copies of the (n − 1)-dimensional
sphere, and let {Bnj }j∈J be the family of corresponding n-balls, i.e. Bnj = CSn−1

j ,
and Sn−1

j = ∂Bnj . For a given map

f :
⊔
j∈J

Sn−1
j → A,

let
X = A tf

( ⊔
j∈J

Bnj

)
,

be the adjunction of
⊔
j∈J B

n
j to A via f . The relevant commutative diagram is⊔
j∈J S

n−1
j

f

��

i //
⊔
j∈J B

n
j

f̄

��
A

ī
// X

where i =
⊔
j∈J ij , and ij : Sn−1

j → Bnj is the natural inclusion of the boundary.
Note that the map i is a closed cofibration

Lemma 2.1. There is an homeomorphism

X −A =
⊔
j∈J

(
Bnj − Sn−1

j

)
,

given by the appropriate restriction of the map f̄ . The map ī is a closed cofibration.

Proof. [4] pg. 154. �

For each j ∈ J , f̄(Bnj ) = ēnj is a compact subspace of X (closed if A is Haus-
dorff). The subspaces ēnj are the n-cells of X. The restriction of f̄ to an open ball
Bnj −S

n−1
j is homeomorphic onto enj , an open n-cell of X, whose closure coincides

with ēnj . The map
f̄j = f̄ |Bn

j
: Bnj → X,

is a characteristic map for the cell ēnj ; the map

fj = f |Sn−1
j

: Sn−1
j → A,

which glues the cell ēnj to A is an attaching map for the cell ēnj . The pair (X,A)
is called an adjunction of n-cells (see Definition 1.11).

A CW complex is the direct limit of the sequences of inclusions in : Xn →
Xn+1 of a sequence of adjunctions of discs Xn+1 := Xn tf

(⊔
j∈J B

n
j

)
, where

f :
⊔
j∈J ∂B

n
j → Xn. We present a more concrete definition, covering the more

general case of a relative CW complex.
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Definition 2.2. A pair (X,A) is called a relative CW complex if there
exists a sequences of spaces

X−1 = A ⊆ X0 ⊆ X1 ⊆ . . . ,
such that:

(1) X0 is obtained from A by adjunction of 0-cells (i.e., X is the topological
sum of A and a discrete space);

(2) for every n ≥ 1, the pair (Xn, Xn−1) is an adjunction of n-cells;
(3) X is the union space of the sequences (see Example ??)

X−1 ⊆ X0 ⊆ X1 ⊆ . . . ,
this is the final topology (weak topology) coinduced by the family of the
inclusions of Xn in the union

⋃∞
n=−1X

n.

If the sequence X−1 ⊆ X0 ⊆ X1 ⊆ . . . , is stationary at n, namely if Xn−1 6=
Xn, and Xk = Xn, for all k ≥ n, we say that the relative CW complex (X,A) has
dimension is n, otherwise that the complex has infinite dimension. The space Xn

is called the n-skeleton of the complex.
If A = ∅, then X−1 = ∅ and X0 is a discrete space. In this case X is called

a CW complex. The collection of the cells and the characteristic maps is called
a CW decomposition of the space X. Note that from a set theoretical point
of view, a CW complex is just the disjoint union of its open cells; furthermore,
while the closed cells are closed (and compact) subsets of X, the open cells are not
necessarily open subsets of X (indeed, and open cell of X is not open if it intersects
the boundary of a cell of higher dimension). A CW complex with a finite number of
cells is said to be a finite CW complex; such a CW complex is clearly a compact
space.

A CW complex is a filtered space, according to the following definition.

Definition 2.3. If X is a space, a filtration of X is a sequence

· · · ⊆ X0 ⊆ X2 ⊆ X2 ⊆ . . . ,
with Xn = ∅ for n < 0, of subsepaces of X whose union is X. A space X together
with a filtration of X, is called a filtered space. If X and Y are filtered spaces, a
map f : X → Y such that f(Xn) ⊆ Yn for all n is said to be filtration-preserving

The next two results follow from the very definition.

Corollary 2.1. CW complexes are Hausdorff and normal.

Corollary 2.2. Let X be a CW complex with open cells ej. A map f : X → Y
is continuous if and only iff f |ēj

is continuous for each ej. A map F : X × I → Y
is continuous if and only if F |ej×I is continuous for each ej.

The following is an equivalent definition of a CW complex (see [5] 8.24, [3]
Section 38).

Definition 2.4. Let X be an Hausdorff space and {enj }n∈N,j∈J a family of
(disjoint) topological open cells (i.e. enj = Bn − ∂Bn is homeomorphic to the open
n-ball (n-disc), see Definition 2.1). Let Xn =

⋃
j∈J e

n
j , and assume:

(1) X =
⊔
j,n e

n
j , i.e. X =

⋃
j,n e

n
j , and ej ∩ ek = ∅, whenever j 6= k;

(2) for each cell enj there is a relative homeomorphism fnj : (Bn, ∂Bn) →
(enj ∪Xn−1, Xn−1), i.e. there is a map fnj : Bn → X such that:
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(a) fnj |Bn−∂Bn is an homeomorphism onto enj ,
(b) fnj (∂Bn) ⊆ Xn−1;

(3) each ēnj is contained in the union of finitely many emk ;
(4) X has the weak topology determined by the family {ēnj }, i.e. a set U ⊆ X

is closed in X if and only if U ∩ ēnj is closed in ēnj for all enj .

Theorem 2.1. Definitions 2.2 and 2.4 are equivalent.

Proof. [5] 8.24 or [3] 38.2. �

We now give some properties of CW complex.

Lemma 2.2. CW complexes are locally path connected and locally contractible.

Proof. [5] 8.25. �

Lemma 2.3. The topology of a CW complex is the weak topology induced by the
family of its closed cells.

Lemma 2.4. Let K be a compact subset of a CW complex X. Then K is
contained in a finite union of open cells of X.

Proof. [4] pg. 163. �

Lemma 2.5. Let X be a CW complex, then every open cell is open in Xn, and
Xn −Xn−1 is open in Xn.

Proof. [5] pg. 203. �

Next, we give the definition of subcomplex, and of cellular maps.

Definition 2.5. Let F be a family of open cells of a CW complex X, and let
Z be the union of the cells of F . We say that Z is a subcomplex of X if for every
open cell e ∈ F , ē ∈ Z and Z has the topology induced by the closure of all cells in
F . We write Z ≤ X and we call the pair (X,Z) a CW pair.

Proposition 2.1. Arbitrary union and intersections of subcomplexs of a CW
complex X are subcomplexes of X.

Proof. [4] pg. 164. �

Lemma 2.6. Let X be a CW complex, let F be a family of open cells of X, and
let Z be the union of the cells in F . Then, Z is a subcomplex of X if and only if Z
is a CW complex determined by the skeleta Zn = Z ∩Xn, n ≥ 0.

Proof. [4] pg. 164. �

Note that CW complex satisfies an homotopy extension property ([5] 8.27) by
construction, in particular this implies the following useful result.

Proposition 2.2. Let L be a subcomplex of a CW complex K. Then, the
following assertions are equivalent:

(1) L is a strong deformation retract of K,
(2) the inclusion map i : L→ K is a homotopy equivalence,
(3) πn(K,L) = 0 for all n ≤ dim(K − L), where dim(K − L) means the

dimension of the top cell in K − L.
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Proof. The fact that (1) implies (2) and that (2) implies (3) are elementary.
From (3) to (1) one proceeds inductively using the hypothesis and the homotopy
extension property. In particular, see for example [4] 6.2.5 and 6.2.6, where it is
proved that adjunction of n-cells produces (n − 1)-connected spaces, for example
(X,Xn) is (n− 1)-connected. �

Proposition 2.3. Let Z be a subcomplex of a CW complex X. Then the
quotient space X/Z is a CW complex.

Proof. [4] pg. 171. �

Definition 2.6. A map f : X → Y between two CW complexes is called cel-
lular if it takes the n-skeleton Xn of X into the n-skeleton Y n of Y . In particular,
if each cell of X is sent into a cell of Y . A map of CW pairs f : (X,A) → (Y,B)
is cellular if f(Xn ∪A) ⊆ (Y n ∪B) (note this does not imply that f |A is cellular).

Remark 2.1. Note that a cellular map not necessarily sends cells into cells.
for example consider the decomposition of the circle with one or two 1-cells.

Definition 2.7. A CW or cellular isomorphism is an homeomorphism such
that the image of each cell is a cell.

Lemma 2.7. A cellular homeomorphism with cellular inverse is a cellular iso-
morphism.

Adjunction of CW complexes are CW complexes as long as the attaching map
is cellular. More precisely, we have:

Proposition 2.4. Let A be a subcomplex of a CW complex X and let f : A→
Y be a cellular map. Then Y tf Xis a CW complex containing Y as a subcomplex,
and whose cells are those of X −A and those of Y

Proof. [4] pg. 168. �

Corollary 2.3. Let f : X → Y be a cellular map between CW complexes.
Then the mapping cylinder Mf is a CW complex, with cells which are either cells
of Y or which are of the form e× {1} or e× (0, 1), where e is an arbitrary cell of
X.

Theorem 2.2. Cellular approximation theorem. Any map f : (X,A) →
(Y,B) between CW pairs (or even between relative CW) is homotopic rel A to a
cellular map.

Proof. [6] �

Lemma 2.8. A cellular map f : X → Y between CW complexes is a homotopy
equivalence if and only if X is a strong deformation retract of the mapping cylinder
Mf .

Proof. Exercise 1.
�
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3. Cellular homology theory

We now show how to compute the singular homology of a CW complex. The
symbol Hn will denote singular homology in general, but if it happens that the
space in question is a triangulable CW complex, then Hn can also be taken to
denote simplicial homology, since there is a natural isomorphism between singular
and simplicial theory. The ring of coefficients is Z.

Recall that if given a triple B ⊆ A ⊆ X of spaces, one has a short exact
sequence of chain complexes (where Sk denotes the singular chain complexes)

0 // Sn(A)
Sn(B)

// Sn(X)
Sn(B)

// Sn(X)
Sn(A)

// 0

In particular if X is a (simplicial) complex, A a subcomplex of X and B a
subcomplex of A, this holds for simplicial chain complexes. This gives rise to
the following exact sequence, called the homology exact sequence of a triple
(X,A,B):
. . . // Hn(A,B)

α
// Hn(X,B)

β
// Hn(X,A)

γ
// Hn−1(A,B) // . . .

where α and β are induced by the inclusions, and γ is the composite
Hn(X,A)

∂
// Hn−1(A)

j∗
// Hn−1(A,B),

where j : (A, ∗)→ (A,B), and ∂ is the boundary homomorphism in the homology
exact sequence of the pair (X,A).

Note that this can be also understood by composing the two exact sequences
of the two pairs (X,B) and (B,A) as described in the following diagram:

. . .

��
Hn−1(B)

��
. . . // Hn(A) // Hn(X) // Hn(X,A)

γ
''NNNNNNNNNNN ∂
// Hn−1(A)

j

��

// . . .

Hn−1(A,B)

��. . .
The construction is natural, in the sense that a map of triple f : (X,A,B) →

(Y,C,D) induces a homomorphism of the corresponding exact homology sequences.

Definition 3.1. Let (K,L) be a CW pair. Let

Cn(K,L) := Hn(Kn ∪ L,Kn−1 ∪ L),

and let dn be defined by the composite
Hn(Kn ∪ L,Kn−1 ∪ L)

∂
// Hn−1(Kn−1 ∪ L)

j∗
// Hn−1(Kn−1 ∪ L,Kn−2 ∪ L),

The chain complex : C(K,L) = {Cn(K,L), dn} is called the cellular chain
complex of the pair (K,L).

Exercise 2. Verify that d2 = 0.
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Lemma 3.1. Let en be an n-cell of K − L, and let φ be a characteristic map
for en. Then, the map of pairs φ : (Bn, ∂Bn)→ (ēn, ∂en) induces an isomorphism
in relative homology.

Proof. This is clear since it is a relative homeomorphism, see also [3] 39.1. �

Recalling that (Kn∪L,Kn−1∪L) is the adjoint space (see beginning of Section
2) ⊔

j∈Jn
Sn−1
j

f

��

i //
⊔
j∈Jn

Bnj

f̄

��
Kn−1 ∪ L

ī
// Kn ∪ L

and denoting by q : (Kn−1 ∪ L) t
⊔
j∈Jn

Bnj the quotient map in the definition of
adjunction, we have the following result:

Lemma 3.2. The map q induces an isomorphism in relative homology:

Hk(Kn ∪ L,Kn−1 ∪ L) ∼= Hk(
⊔
j∈Jn

Bnj ,
⊔
j∈Jn

∂Bnj ).

Proposition 3.1. Let (K,L) be a CW pair. Let ej be an open cell of K − L
and φj a characteristic map for ej. Then,

(1) Hk(Kn ∪ L,Kn−1 ∪ L) ∼= 0 if k 6= n,
(2) Cn(K,L) = Hn(Kn∪L,Kn−1∪L) is free with basis the elements (φj)∗(ωn),

where ωn is a fixed generator for Hn(Bn, ∂Bn),
(3) if c is a singular n-cycle of K mod L representing [c] ∈ Hn(Kn∪L,Kn−1∪

L) and if |c| does not include the n-cell ej0 , then nj0 = 0 in the expression
[c] =

∑
j∈Jn

nj(φj)∗(ωn), nj in the coefficient ring.

The generator (φj)∗(ωn) of Hn(Kn ∪ L,Kn−1 ∪ L) is called a fundamental
cycle of the n-cell ej.

Proof. [3] 39.4 for the first two points, [6] pg. 58 for all the points. �

Proposition 3.2. Let X be filtered by the subspaces X0 ⊆ X1 ⊆ . . . . Assume
that Hk(Xn, Xn−1) = 0 for n 6= k. Suppose also that given any compact set C in
X, there is an n such that C ⊆ Xn (in particular this holds for a CW complex).
Let C(X) be the chain complex associated to X as in definition 3.1. Then there is
an isomorphism

T : Hn(C(X))→ Hn(X).
T is natural with respect to homomorphisms induced by filtration-preserving

maps and takes the homology class of a cycle
∑
j∈J nj(φj)∗(ωn) ∈ Cn(X) onto

the homology class of the cycle
∑
j∈J nj φ̄j ∈ Sn(X), where φ̄j is a singular chain

representing (φj)∗(ωn)..

Proof. [3] 39.4. �

Proposition 3.3. Let X be filtered by the subspaces X0 ⊆ X1 ⊆ . . . . Suppose
that X is the space of a simplicial complex K, and each subspace Xn is the space of
a subcomplex of K of dimension at most n. Let Hsimp,n denote simplicial homology,
and assume that Hsimp,k(Xn, Xn−1) = 0 for n 6= k. Then Hn(Xn, Xn − 1) equals
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a subgroup of Csimp,n(K), and the isomorphism of Proposition 3.2 is induced by
inclusion. Indeed, Hn(Xn, Xn − 1) is the subgroup of Csimp,n(K) consisting of all
n-chains of K carried by Xn whose boundaries are carried by Xn−1.

Proof. [3] 39.5. �

Definition 3.1 is natural in the following sense (easy to verify): a map of pairs
f : (K,L) → (K ′, L′) induces a chain map f# : C(K,L) → C(K ′, L′) and thus a
homomorphism in homology.

Proposition 3.4. Cellular homology is a functor from CW pair.

Theorem 3.1. There is a natural equivalence T between the cellular homol-
ogy functor and the singular homology functor (simplicial homology functor for
triangulable CW complexes). Namely, for every CW complex pair (K,L) there is
an isomorphism T(K,L) : H∗(C(K,L)) → H∗(K,L), and for every cellular map
f : (K,L)→ (K ′, L′) the following diagram commutes for each n

Hn(C(K,L))

f∗

��

T(K,L) // Hn(K,L)

f∗

��
Hn(C(K ′, L′))

T(K′,L′) // Hn(K ′, L′)
The isomorphism T(K,L) takes the homology class of a cycle

∑
j∈J nj(φj)∗(ωn) ∈

Cn(K,L) onto the homology class of the cycle
∑
j∈J nj φ̄j ∈ Sn(K,L), where φ̄j is

a singular chain representing (φj)∗(ωn).

Proof. [6] pg. 65. �

We conclude with few words on orientation of cells and cellular chains.

Definition 3.2. Let e be a topological n-cell (see Definition 2.1). The group
Hn(ē, ∂e) is infinite cyclic. The two generators of this group are called the two
orientations of the cell e. An oriented n-cell is a topological cell e together with
an orientation of e.

We have seen that the cellular chain group Cn(X) = Hn(Xn, Xn−1) is a free
abelian group. One obtains a basis for it by orienting each open n-cell ej of X and
passing to the corresponding element of Hn(Xn, Xn−1), that is, by taking the image
of the orientation under the homomorphism induced by inclusion Hn(ēj , ∂ej) →
Hn(Xn, Xn−1).

The homology of the chain complex C(X) is isomorphic with the singular homol-
ogy of X. In the special case where X is a triangulable CW complex triangulated by
a complex K, we interpret these comments as follows: the fact that Xn and Xn−1

are subcomplexes of K implies that each open n-cell ej is a union of open simplices
of K, so that ej is the polytope of a subcomplex of K. The group Hsimp,n(ēj , ∂ej)
equals the group of n-chains carried by ēj whose boundaries are carried by ∂ej . The
cellular chain group C(X) equals the group of all simplicial n-chains of X carried
by Xn whose boundaries are carried by Xn−1.

We conclude resuming the situation: given a CW pair (K,L), the CW decom-
position canonically defines a chain complex

C(K,L) = {Cn(K,L), dn},
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where
Cn(K,L) =

∑
j∈Jn

Hn(ēj , ∂ej),

of free abelian groups, i.e. free abelian Z-modules. By ordering and orienting
the n-cells we obtain a basis of this chain complex, given by the set of the n-
fundamental cycles. We call this base the geometric basis of C(K,L). Note that
the ambiguities in fixing this basis are encoded by the action of the group∏

n≥0

SJn
×Z/2Jn ,

where SJ denotes the group of permutations of a set J .

Exercise 3.1. Give a cellular decomposition of the real projective space/plane
and compute its homology.

Exercise 3.

3.1. Covering spaces in the CW category. The next three lemmas follow
by classical theory of covering spaces, see for example [5].

Lemma 3.3. If K is a CW complex for any subgroup G of π1(K) there is a
covering space (K̂, p) of K with p∗(π1(K̂)) = G. In particular, K has a universal
covering space.

A covering in the CW category p : K̂ → K is a covering with K̂ and K CW
complexes and p CW map. When dealing with CW complexes, nothing is lost
assuming it is a CW covering by the following result.

Lemma 3.4. Let p : K̂ → K be a covering, with K a CW complex. Then, the
family of cells êj, that are lifts of the cells ej of K gives a cell structure for K̂ with
respect to which K̂ is a CW complex. If φj : Bn → K is a characteristic map for
ej, êj is a lift of ej, and φ̂j : Bn → K̂ is lift of φ such that φ̂j(x) ∈ êj for some
x ∈ Bn − ∂Bn, then φ̂j is a characteristic map for êj.

Lemma 3.5. If p : K̂ → K is a covering and f : L→ K is a cellular map which
lifts to f̂ : L → K̂, then f̂ is cellular. If f is also a covering in the CW category,
so is f̂ .

Since a CW covering that is also a homeomorphism is a cellular isomorphism,
Lemma 3.5 implies that the universal covering space of a CW complex K is unique
up to cellular isomorphism.

Lemma 3.6. Let (K,L) be a pair of connected CW complexes, and p : K̃ →
K the universal covering of K. Let L̃ = p−1(L). If i∗ : π1(L) → π1(K) is a
isomorphism, then p|L̃ : L̃ → L is the universal covering of L. If L is a strong
deformation retract of K, then L̃ is a strong deformation retract of K̃.

Proof. L̃ is a closed set which is the union of cells of K̃ (the lifts of the cells of
L). Thus L̃ is a subcomplex of K̃. Clearly, p|L̃ is a covering of L. We show that if i∗
is isomorphism, then L̃ is simply connected. First, by the five Lemma applied to the
exact homotopy sequences of (K̃, L̃) and (K,L), it follows that πq(K̃, L̃) ∼= πq(K,L)
for all q ≥ 1. By the exact homotopy sequence of the pair (K,L), π1(K,L) = 0.
Combining with the previous isomorphism, π1(K̃, L̃) = 0, and by connectedness of
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K̃ and the exact homotopy sequence of (K̃, L̃), L̃ is connected. Commutativity of
the diagram

0

��
π1(L̃)

��

// π1(K̃) = 0

��
π1(L) ∼=

// π1(K).

shows that L̃ is 1-connected. Eventually, if L is a strong deformation result of
K, by Proposition 3.1, πq(K,L) = 0, implying by the previous isomorphism that
πq(K̃, L̃) = 0, and hence by the same proposition the last statement. �

Lemma 3.7. Let f : K → L be a cellular map between connected CW complexes
such that f∗ : π1(K) → π1(L) is an isomorphism. If K̃, L̃ are universal covering
spaces of K,L, and f̃ : K̃ → L̃ is a lift of f , then Mf̃ is a universal covering space
of Mf .

Proof. Exercise 4. �

We conclude reviewing in some details the standard identification of the group
of covering transformation with the fundamental group of a CW complex K.

Proposition 3.5. Let p : K̃ → K the universal covering of a CW complex K.
Fix a base point x0 ∈ K and x̃0 ∈ p−1(x0) ∈ K̃. Then, the function

θx0,x̃0 :π1(K,x0)→ Cov(K̃,K),
θx0,x̃0 :α 7→ gα,

where gα is the unique covering homeomorphism with gα(x̃0) = α̃(1) (by Lemma
??), is an isomorphism of groups.

Proof. We provide an explicit description of the action of gα points of K̃, not
in the fibre of x0. Let a ∈ α, a : (I, ∂I) → (K,x0) be a loop. By Proposition ??
or Proposition ??, there exists a unique lift ã of a with ã(0) = x̃0. If ỹ ∈ K̃ and
b : (I, 0, 1)→ (K̃, x̃0, ỹ) is any path, then

gα(ỹ) = ã ∗ pb(1),

where ∗ denotes sum of loops. For we have the following picture. In K the loop
a starts and ends at x0, and the path pb starts at x0 and ends at some y0 = p(y).
In K̃, there is the lift of a, that is the path ã starting at x̃0 = a(0), and ending
x̃1 = a(1), and there are the lifts of pb: p̃b starting at x̃0, and ending at say ỹ0, and
p̂b starting at x̃1 and ending at ỹ1. By unicity of lift, p̃b = b and hence ỹ0 = ỹ.

Since gα is an homeomorphism, and gα(x̃0) = x̃1 by hypothesis, it follows that
gα(b) = gα(p̃b) = p̂b. Thus

gα(ỹ) = gα(b(1)) = p̂b(1).

It is now clear by direct investigation that p̂b(1) = ã ∗ pb(1), and this completes
the proof of the formula.
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It is now easy to see that θ is isomorphism. For example, given α, β ∈ π1(K,x0),
and identifying paths with classes,

gαgβ(x̃) = gα(β̃(1)) = ˜α ∗ (pβ̃)(1) = α̃ ∗ β(1) = gαβ(x̃).

�

If p : K̃ → K and q : L̃ → L are universal coverings, any map f : (K,x) →
(L, y) induces an homomorphism f∗ on the fundamental groups and an homomor-
phism f# on the covering transformation groups. The following diagram obviously
commutes

π1(K,x)

θx,x̃

��

f∗ // π1(L, y)

θy,ỹ

��
Cov(K̃,K)

f#

// Cov(L̃, L)

Lemma 3.8. If f̃ : K̃ → L̃ covers f , then f̃g = f#(g)f̃ , for all g ∈ Cov(K̃,K).

Proof. The following diagram is useful:

K̃

��

g
//

f̃ ��>
>>

>>
>>

K̃

��

f̃ ��?
??

??
??

?

L̃

f1

��

f#(g)
// L̃

��

K //

f   @
@@

@@
@@

K

f   A
AA

AA
AA

A

L // L.
Both the maps cover f , so it suffices to show that they agree at a point. Let

α = θ−1
x,x̃(g), since f̃ α̃(0) = ỹ = f̃α(0), then

f̃g(x̃) = f̃ α̃(1) = f̃α(1) = θy,ỹ(f∗(α))(ỹ) = θy,ỹ(f#(θ−1
x,x̃(g)))(ỹ) = f#(g)(ỹ).

�

3.2. Fundamental properties of the universal cover of a CW complex.
Let (K,L) be a CW pair, and p : K̃ → K the universal covering space of K. Then,
by results of Section 3, the cellular chain complex C(K̃, L̃) (where L̃ = p−1(L)) is
a free Z-module with properties described in Proposition 3.1 , with natural basis
given at the end of the section. We now show that C(K̃, L̃) is canonically a free
Zπ1(K)-module, and we describe a natural bases for it.

Recall that π1(K) ∼= Cov(K̃,K), the group of covering transformations of K̃,
namely homeomorphisms g : K̃ → K̃ such that pg = p. If g ∈ Cov(K̃,K) then it
is a cellular isomorphism of K̃ by Lemma 3.5, and it induces the homomorphism

g∗ : Cn(K̃, L̃)→ Cn(K̃, L̃),
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with dg∗ = g∗d (where d is the boundary operator), for each n. Let define an action
of Cov(K̃,K) on C(K̃, L̃):

· : Cov(K̃,K)× C(K̃, L̃)→ C(K̃, L̃),

· : (g, c) 7→ g · c := g∗(c).

Clearly, d(g · c) = g · d(c). This makes C(K̃, L̃) a Zπ1(K)-complex (i.e. a
complex of Zπ1(K)-modules) if we extend the action linearly, namely if we define(∑

α∈A
nαgα

)
· c :=

∑
α∈A

nαgα · c.

The following proposition shows that C(K̃, L̃) is indeed a free Zπ1(K)-complex
with a natural class of bases. These bases are obtained by lifting and orienting the
geometric basis of the complex C(K,L) (see the end of Section 3).

Proposition 3.6. Let (K,L) be a CW pair, p : K̃ → K the universal covering
space of K, and L̃ = p−1(L). For each n-cell ej ∈ K − L fix a characteristic map
φj : Bn → L, and a lift φ̃j : Bn → K̃. Then, the set

{(φ̃j)∗(ωn)}j∈J,ej∈K−L,

is a basis for Cn(K̃, L̃) as a Zπ1(K)-module for each n, and thus the union of these
sets for all n ≥ 0, is a basis for Cn(K̃, L̃) as Zπ1(K)-complex.

Proof. Fix a base point ? ∈ In − ∂In for each n > 1. For each y ∈ p−1φj(?),
let φ̃j,y be the unique lift of φj with φ̃j,y(?) = y (use the Lifting Theorem). Since
the covering is the universal covering, Cov(K̃,K) acts freely and transitively on
each fibre p−1(x). Thus each φ̃j,y is uniquely expressible as φ̃j,y = gφ̃j for some
g ∈ Cov(K̃,K). Then,

{φ̃j,y | y ∈ p−1φj(?)} = {gφ̃j | g ∈ Cov(K̃,K)}.

By Proposition 3.1 and Lemma 3.4, C(K̃, L̃) is a free Z-module with basis

{(φ̃j,y)∗(ωn) | y ∈ p−1φj(?)} ={(gφ̃j)∗(ωn | g ∈ Cov(K̃,K)}

={g∗(φ̃j)∗(ωn) | g ∈ Cov(K̃,K)}

={g · (φ̃j)n(ωn) | g ∈ Cov(K̃,K)},
where j ∈ J varies over the given characteristic maps for K − L. Thus each chain
c ∈ C(K̃, L̃) is uniquely representable as a finite sum

c =
∑

j∈J,α∈A
nj,αgα · (φ̃j)∗(ωn) =

∑
j∈J

(∑
α∈A

nj,αgα

)
· (φ̃j)∗(ωn),

where
∑
α∈A nj,αgα ∈ Zπ1(K). This proves that the set

{(φ̃j)∗(ωn)}j∈J,ej∈K−L,

is a basis for Cn(K̃, L̃) as a Zπ1(K)-module for each n.
�

Exercise 3.2. Give the cellular chain complex of the universal covering space
of a circle S1 with coefficients in Zπ1(S1).

Exercise 5.
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