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Preface

Let ξ be a smooth principalG-bundle over a differential manifoldB represent-
ing a physical theory. An equivariant, fibre preserving bundle automorphism
of ξ gives rise to a new bundle with identical physical content and therefore,
such an automorphism is a symmetry of the physical theory. It is clear that
the set G(ξ) of all such automorphisms (called gauge transformations) has
the algebraic structure of a group; it has also a topological structure com-
patible with the group structure, that is to say, G(ξ) is a topological group
(see Section 2.1) called gauge group of ξ.

The gauge group G(ξ) acts on the connections and curvature forms; the
attempt to understand these objects under the action of the gauge group
lead to the development of a new theory known as Gauge Theory. Born in
the framework of Theoretical Physics, gauge theory soon became an impor-
tant and powerful research instrument also in Differential Geometry, leading
to the construction of new invariants. On the other hand, gauge groups
are interesting topological and algebraic objects on their own right. More-
over, they can be viewed as particular cases in more general contexts as, for
example, in the study of the group of homotopy classes of fibre preserving
self-homotopy equivalences of a fibration. Indeed, from this point of view,
gauge groups are just a particular case of a far more general abstract situa-
tion: they can be regarded as coming from the self-equivalences of an object
within a well-defined Category.

The general line of thought in these notes is the classical one followed
rather successfuly in Algebraic Topology: we associate algebraic objects to
fibre bundles, and through some algebraic properties of the former we try to
obtain topological informations about the latter. Now, gauge groups contain
interesting informations about the topology of the bundles; thus, it seems
rather natural to search for these topological properties through algebraic
manipulations of the gauge groups. A direct analysis and classification of
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gauge groups as algebraic objects is rather complicated; a simpler way seems
to be the comparison of the gauge groups of different bundles within a larger
group of symmetries. Let us explain this last idea more thoroughly.

Fibre bundles are locally trivial over the open sets Ui of a convenient open
covering of B, that is to say, the restriction of ξ over each Ui behaves like a
projection Ui×G - Ui. On the other hand, a gauge transformation of ξ is
represented locally, by a map Ui

- G and thus, it is possible to view G(ξ)
as a topological closed subgroup of the topological group L =

∏
iMap(Ui, G).

Now if B has a good cover – an open covering made up of contractible open
sets – any principal G-bundle over B can be trivialized over the good cover
and therefore, the gauge group of any principal G-bundle over B can be
imbedded in L.

The objective of these lecture notes is essentially to make enquiries in the
following two directions: (i) what topological informations about bundles
one can obtain from the conjugacy of their gauge groups? and (ii) can we
use the conjugacy relation introduced previously as a first step towards the
classification of gauge groups via the classification of bundles with conjugated
gauge groups?

We now give a brief description of the contents of each chapter of these
Lecture Notes. In the first chapter we describe the categories we deal with;
in particular, we study the category of weak Hausdorff k-spaces which is
the category of topological spaces we use. Although this category is smaller
than the category of all topological spaces, it is important to keep in mind
that it is still large enough to contain all the interesting spaces of everyday
life: manifolds, metric spaces, CW-complexes, etc.; moreover, the category
of weak Hausdorff k-spaces satisfies an exponential law, no matter which
spaces we consider. For this and other reasons, such a category is extremely
useful for homotopy theory. The reader who has not been exposed to this
category before might find it very abstruse at a first glance; however, one
should not be deterred by this. Indeed, on a first reading, one could very
well bypass Section 1.1 and simply assume that all spaces encountered have
the right properties. Chapter one also contains a review of the categories of
fibre bundles and principal bundles, including their equivariant versions.

Chapter 2 is devoted to the definition and main topological properties of
gauge groups; in particular, Section 2.2 is heavily based on results presented
in [6].

In Chapter 3 we go deeply into an analysis of the relation between two
principal G-bundles which have conjugate gauge groups. We soon obtain
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that, under certain mild conditions, the set of (equivalence classes) of princi-
pal ZG-bundles (here ZG represents the centre of G) is actually an abelian
group acting on the set of all (equivalence classes) of principal G-bundles;
then we discover that two pricipal G-bundles with conjugate gauge groups
are characterised by the fact that they differ by the action of a principal
ZG-bundle. This relation becomes clear in the case of vector bundles: two
vector bundles (real or complex) ξ and ξ′ have conjugate gauge groups if,
and only if, ξ′ ∼= ξ ⊗ λ where λ is a line bundle. This clearly defined geo-
metrical relation seems to suggest an easy way to enumerate bundles with
conjugated gauge groups: just use the classification of line bundles given by
the cohomology of the base space. Actually one soon realizes that this is
not true in general, because tensor multiplication by a line bundle defines an
action which is not free. This problem can be reformulated in an elemen-
tary way: given a vector bundle ξ and a line bundle λ over the same base
space, are ξ⊗λ and ξ equivalent? Like many basic questions, and despite its
simple formulation, this problem is eventually extremely hard to solve; the
last section of Chapter 4 is devoted to a particular case (of even dimensional
real vector bundles over real projective spaces) which we are able to solve.
We also hope to entice the reader to do further work in the direction of the
problem we raised.

Up to the end of Chapter 4 we make no use of the Classification Theorem
for bundles; that is the technical device we use in Chapter 5. To do this we
need several properties of Classifying Spaces; the construction and properties
of Classifying Spaces and Universal Bundles are reviewed in the Appendix
where the reader can read a reconstruction of the work by J. Milgram and
N. Steenrod [42] within the framework of the category of weak Hausdorff k-
spaces. Indeed, the Appendix gives a self contained overview of this subject;
on the one hand, we state the results which give the necessary tools employed
throughout these notes, and on the other hand, we hope to impress upon the
interested reader a deeper feeling for the methods and techniques used in the
construction of Classifying Spaces. As we said before, Chapter 5 makes use of
the Classification Theorem; this theorem is combined with techniques typical
of Homotopy Theory to restate, in a far more general context, concepts and
results obtained in the previous chapters. Moreover, in this way we can shed
new light into the theory we are trying to develop.

The authors wish to thank Wilson Sutherland for his many suggestions
and continuous support.
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Chapter 1

Preliminaries

The intent of this chapter is to describe the categories which are necessary
to develop this work, and to give some of the important properties related to
them. We begin by giving a partial list of the categories which we shall use.

Sets - category of sets and functions between sets;

Gr - category of groups and group homomorphisms;

Top - category of all topological spaces (simply called spaces) and contin-
uous functions (called maps);

CW - category of CW-complexes and maps (not necessarily cellular);

HTop - category of spaces and homotopy classes of maps. This is the
homotopy category associated to Top;

If in the above categories we consider only based objects (i.e., each object
is taken together with a distinguished element - a base point ) and consider
only the morphisms which take base points into base points, then we have
the based subcategories Sets∗, Gr∗, Top∗ and CW∗; as for HTop, we obtain
HTop∗ via based homotopy i.e., we require that in the definition of homotopy,
the entire whisker over the base point of the first space goes to the base point
of the second space.

A question of notation: for any category C, we denote by C(X, Y ) the set
of all morphisms from an object X to an object Y of C.

We could “combine” some of these categories; for example, we could con-
sider the category TopGr of topological groups; its morphisms are continuous
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group homomorphisms. Furthermore, we indicate with ∼= the equivalences
in each category.

1.1 The category wHk(Top)

While the previous categories do not need further explanations, there is an
important category which we shall have to use for technical reasons and which
needs some explaining; we refer to the category wHk(Top) of weak Hausdorff
k-spaces. Although its definition may seem overwhelming to the person who
encounters it for the first time, such a reader should not be deterred by the
momentary difficulty; indeed, wHk(Top) contains all the nice spaces one
deals with in practice - such as smooth manifolds - and hence, on a first
reading, those who are unfamiliar with weak Hausorff k-spaces might simply
ignore their definition and admit they are working with “nice spaces”.

We define wHk(Top) as follows. Let X be a given space; a subset A ⊂ X
is compactly closed if, for every compact Hausdorff space K and every map
f : K - X, f−1(A) ⊂ K is closed in K; the space X is said to be a
k-space if all of its compactly closed subsets are closed. Now define a functor
k : Top - Top by associating to each X ∈ Top the space k(X) with the
same underlying set as X but with the topology given by taking as closed
sets the compactly closed sets with respect to the topology of X. As for the
morphisms, we observe that if Y is a k-space, then a function f : Y - X is
a map, if and only if, f : Y - k(X) is continuous; thus, for any morphism
f ∈ Top(Y,X), we simply take k(f) = f : k(Y ) - k(X). The functor
k is called k-ification and its image k(Top) is a full subcategory of Top.
The category k(Top) is both complete and cocomplete, with the product of
k-spaces given by the rule

X × Y = k(X ×c Y )

where X ×c Y is the usual cartesian product in Top. A k-space X is said to
be weak Hausdorff whenever the diagonal ∆X : X - X ×X is closed in
X ×X. The category wHk(Top) is the full subcategory of Top determined
by all weak Hausdorff k-spaces and maps. There is a useful characterization
of weak Hausdorff k-spaces which reads as follows: if X is a k-space; then
X is weak Hausdorff if, and only if, for every map f : K - X, with K
compact and Hausdorff, f(K) is closed and compact Hausdorff.
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We give now the main properties of wHk(Top). To begin with, we note
that the previous characterization of weak Hausdorff k-spaces implies that
these spaces have separation property T1; they are not necessarily Hausdorff
as the property of ∆ being closed in k(Top) is not as strong as being closed
in Top (there are examples of k-spaces that are not weak Hausdorff: the
Tychonoff plank is such an example – see [15, Appendix A1]).

Next, wHk(Top) is closed under the formation of subspaces, finite prod-
ucts and coproducts, and quotients by closed subspaces. Notice that the
category wHk(Top) has mapping spaces Y X = k(Map(X, Y )) (Map(X, Y )
is endowed with the compact-open topology), and these satisfy the exponen-
tial law

(ZX)Y ∼= ZX×Y .

Finally, wHk(Top) is closed under the formation of adjunction spaces: given
that A is a closed subspace of X, for any map f : A - B, the space
B tf X obtained as a pushout of the diagram X � A - B is also an
object of wHk(Top).

As we did before, we could combine the category Gr with wHk(Top) to
obtain the category wHk(Top)Gr of weak Hausdorff topological groups.

A space X ∈ Top has the initial topology induced by a map i : X - Y
if, for every Z ∈ Top, f ∈ Top(Z,X) ⇐⇒ if ∈ Top(Z, Y ). Dually, a
space X has the final topology induced by a map p : Y - X if, for every
space Z ∈ Top, g ∈ Top(X,Z) ⇐⇒ gp ∈ Top(Y, Z). If X has the initial
topology induced by i : X - Y in Top and i is injective, we say that i is
an inclusion; then U ⊂ X is open if, and only if, i(U) ⊂ i(X) is open1. If
X has the final topology induced by p : Y - X and p is surjective, we
say that p is a proclusion; then U ⊂ X is open if, and only if, p−1(U) ⊂ Y
is open. It is very easy to show that the composition of two inclusions (resp.
proclusions) is an inclusion (resp. proclusion). Furthermore, a finite product
of inclusions in Top is an inclusion (see [9, 1.4.1, Corollary to Proposition
3]); the corresponding property for proclusions fails to be true in Top but
not in wHk(Top):

Lemma 1.1.1 Suppose that f : X - Y and f ′ : X ′ - Y ′ are proclu-
sions in wHk(Top). Then f × f ′ : X ×X ′ - Y × Y ′ is a proclusion in
wHk(Top).

1The following observation will be useful later on: an injection of Top is closed ⇐⇒
it is a closed inclusion.



12 CHAPTER 1. PRELIMINARIES

Proof – Since the functor X × − preserves colimits (see [15, Appendix])
the space X × Y ′ has the final topology with respect to 1X × f ′; a similar
argument applied to −× Y ′ shows that X ′ × Y ′ has the final topology with
respect to f × 1Y ′ and therefore, X ′× Y ′ has the final topology with respect
to f × f ′. 2

Notice also the following property of the functor k:

Lemma 1.1.2 The k-ification functor k : Top - Top preserves inclu-
sions.

Proof – Let i ∈ Top(X, Y ) be an inclusion. Clearly, ki is injective. Now we
must show that, given any Z ∈ k(Top), a function g : Z - k(X) is contin-
uous ⇐⇒ kig is continuous. In fact, kig is continuous ⇐⇒ ig : Z - Y
is continuous ⇐⇒ g : Z - X is continuous ⇐⇒ g : Z - k(X) is
continuous. 2

We now recall the definition and the main properties of expanding se-
quences of spaces in wHk(Top); we refer the reader to [15] for further details2.
An expanding sequence of spaces in wHk(Top) is a sequence {Xn, n ∈ IN} of
spaces in wHk(Top) such that, for every n ∈ IN, Xn is a closed subspace of
Xn+1. The union space of the expanding sequence is the set X =

⋃∞
n=0Xn

endowed with the final topology with respect to the family of inclusions
Xn ⊂ X. The family of spaces {Xn, n ∈ IN} is also called a filtration of
X. A map f between two filtered spaces X and Y is said to be filtered if
there exists a sequence of maps fn : Xn

- Yn which is compatible with
the filtrations, that is to say, if fn+1|Xn = fn, for every n ∈ IN. Clearly, a
compatible sequence of maps induces a map (the union map) between the
union spaces.

The main properties of the union space of an expanding sequence, are
due to the fact that the topology of the union space is coherent with that
determined by the family {Xn, n ∈ IN}, and each Xn is a closed subset of
X. In particular, this implies that wHk(Top) is closed under the formation
of union spaces of expanding sequences; furthermore, if all the inclusions
Xn ⊂ Xn+1 are closed cofibrations, then the inclusions Xn ⊂ X are also
closed cofibrations.

2Unlike [15] we do not require that each space of an expanding sequence is included in
the next as a closed cofibration; nevertheless, the results of [15] are still valid.
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The following lemmas show how the process of taking the union map of
a compatible sequence between filtered spaces, preserves closed inclusions,
proclusions and closed cofibrations.

Lemma 1.1.3 Let X =
⋃∞

n=0Xn and Y =
⋃∞

n=0 Yn be filtered spaces, and let
fn : Xn

- Yn be a compatible sequence of closed inclusions (respectively,
proclusions). Then, the union map f is a closed inclusion (respectively, pro-
clusion).

Proof – We begin with closed inclusions. Since f is injective, we have only
to prove that f is closed. Let C be closed in X; then f(C)∩Yn = fn(C∩Xn)
is closed in Yn, and hence in Y ; it follows that f(C) is closed in Y .

Now we take a look at the proclusions. It is easy to see that f is surjective;
it remains to prove that Y has the final topology coinduced by f . If V ⊆ Y
is such that f−1(V ) is open in X, then f−1(V ) ∩Xn is open in Xn for each
n. Now set Vn = V ∩ Yn and observe that f−1(V ) =

⋃∞
n=0 f

−1(Vn) and

f−1(V ) ∩Xn = f−1
n (Vn)

is open in Xn. Since each fn is a proclusion, Vn is open in Yn for each n and
thus, V is open in Y . 2

For the preservation of cofibrations, we need an extra assumption on the
maps involved:

Lemma 1.1.4 Let X =
⋃∞

n=0Xn and Y =
⋃∞

n=0 Yn be filtered spaces, and
let fn : Xn

- Yn be a compatible sequence of closed cofibrations; suppose
also that all the inclusions Xn ⊂ Xn+1 and Yn ⊂ Yn+1 are closed cofibrations.
Then, the union map f : X - Y is a closed cofibration.

The proof follows the same lines as [15, A.5.5] (the requirement of normality
is not needed).

1.2 Relations, actions and quotients

Let R be an equivalence relation on X ∈ k(Top); because X/R has the final
topology induced by the quotient map p : X - X/R, then X/R ∈ k(Top)
(see [15, page 242]). This is not quite true in wHk(Top): in fact, we heve
the following
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Lemma 1.2.1 Let f : X - Y be a proclusion in k(Top). If X is weak
Hausdorff, then Y is weak Hausdorff iff (f × f)−1∆Y is closed in X ×X.

Let R and R′ be two given equivalence relations on X and X ′ respectively.
A map f ∈ k(Top)(X,X ′) is said to be relation preserving if x1Rx2 implies
f(x1)R

′f(x2) for each x1, x2 in X, and relation bipreserving if x1Rx2 ⇐⇒
f(x1)R

′f(x2) for each x1, x2 in X. A relation preserving map f : X - X ′

defines a unique map f̂ ∈ k(Top)(X/R,X ′/R′) such that p′f = f̂p. Notice
that if f is relation bipreserving then f̂ is injective; moreover, if f is an
injective relation preserving map and f̂ is injective, then f is actually relation
bipreserving. Finally, if f is a proclusion, so is f̂ . The last statement holds
true in wHk(Top) providedX/R andX ′/R′ are weak-Hausdorff (for example,
if R and R′ are the relations induced by closed subsets A ⊂ X and A′ ⊂ X ′).
A similar statement for inclusions canot be made in general; a situation where
this can be done will be discussed in Lemma 1.2.4.

We say that M ∈ k(Top) is a topological monoid with multiplication
τ ∈ k(Top)(M ×M,M) if τ is associative with identity element uM ∈ M .
A topological monoid M acts on X ∈ k(Top) if there exists an action3

ϕ ∈ k(Top)(X × M,X) such that ϕ(ϕ × 1M) = ϕ(1X × τ) and, for all
x ∈ X, ϕ(x, uM) = x. With the previous conditions, X is said to be an
M-space. An equivalence relation R on X is said to be consistent with the
action ϕ if, for every m ∈M and x, x′ ∈ X, xRx′ implies that (xm)R(x′m).
If this is the case, the action passes to the quotient, giving an action ϕ̂ :
X/R×M - X/R.

1.2.1 The category TopG

Suppose that the topological monoid M is actually a topological group G.
The action of G on a G-space X ∈ k(Top) determines an equivalence relation
R on X: (xRx′ ⇐⇒ (∃g ∈ G) x′ = xg) which is consistent with the action
in the sense that, for every g ∈ G, xRx′ implies (xg)R(x′g). The k-space
X/R, also denoted by X/G, is said to be an orbit space.

In particular, if the G-space X is itself a group, say H, in general the
action r : H × G - H is not a group homomorphism. The next result
characterizes this situation.

3To simplify the notation, we shall normally write xm for ϕ(x,m).
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Lemma 1.2.2 A right action r : H ×G - H is a group homomorphism
⇐⇒ r commutes with the right and left translations of H (in other words,
if for every g in G and h, h′ in H, hr(h′, g) = r(hh′, g) = r(h, g)h′ ).

Proof – ⇒ For every g, g′ ∈ G and every h, h′ ∈ H

r((h, g)(h′, g′)) = r(hh′, gg′) = r(h, g)r(h′, g′) .

In particular, if we take g′ = uG we obtain that r(hh′, g) = r(h, g)h′, while
taking g = uG we get r(hh′, g′) = hr(h′, g′).

⇐ With arbitrary g, g′, h, h′ as before

r((h, g)(h′, g′)) = r(hh′, gg′) = r(r(hh′, g), g′) =

= r(r(h, g)h′, g′) = r(h, g)r(h′, g′) .

2

As an example, we take G to be a central subgroup of H and r to be the
restriction of the group multiplication. Notice that in this example r is free.

Let ϑ : G - G′ be a continuous homomorphism between the topo-
logical groups G and G′. Take a G-space X and a G′-space X ′; a map
f : X - X ′ is ϑ-equivariant (or G,G′-equivariant) if, for every (x, g) ∈
X×G, f(xg) = f(x)ϑ(g). The category of G-spaces and G-equivariant maps
is denoted by TopG.

Considering the equivalence relation S in X ×G given by

(x1, g1)S(x2, g2) ⇐⇒ x1g1 = x2g2 ⇐⇒ (∃g ∈ G) x2 = x1g and g2 = g−1g1

(similarly, for X ′×G′), we easly get the following relation between equivari-
ance and relation preserving:

Lemma 1.2.3 Under the conditions set before, the following statements hold
true:
i) if f is ϑ-equivariant, both f and f × ϑ are relation preserving;
ii) if f is ϑ-equivariant and injective, then f × ϑ is relation bipreserving.
iii) if f is ϑ-equivariant and injective, and ϑ is onto, then f is relation
bipreserving.

As pointed out before, ϑ-invariant proclusions induce quotient maps that
are proclusions. As for inclusions we have:
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Lemma 1.2.4 Let ϑ ∈ TopGr(G,H). Let X be a G-space, Y be an H-space
Y , and f : X - Y be a ϑ-equivariant relation bipreserving map. Then, if
f is an open or closed inclusion the quotient map f̂ : X/G - Y/H is an
inclusion.

Proof – Since f is relation bipreserving, f̂ is injective. In order to prove
that f̂ is an inclusion we show that f̂ : X/G - f̂(X/G) is open. When f
is open this follows immediately, thus take a closed f .

For every h ∈ H, the map ψh : Y - Y , ψh(y) := y.h is a homeomor-
phism; thus, because f(X) ⊂ Y is closed, every f(X).h is closed in Y . Let
f(X).H =

⋃
h∈H f(X).h with the topology determined by the closed sub-

spaces f(X).h , h ∈ H; one now shows that this topology is equivalent to
the relative topology induced by Y .

Next, let p : X - X/G be the identification map and let U ⊂ X/G
be an open set; then V := p−1(U) is open in X and, f(V ) is open in f(X)
since f is an inclusion. Because f is relation bipreserving and ϑ-equivariant
f(X) ∩ f(V ).H = f(V ); moreover, for every h ∈ H, f(V ).h = f(X).h ∩
f(V ).H is open in f(X).h and hence, f(V ).H is open in f(X).H. Using the
relative topology of the latter space, this means that there exists an open set
B in Y such that f(V ).H = f(X).H ∩B.

At this point we take the identification map q : Y - Y/H and observe
that

q(B) ∩ f̂(X/G) = q(B ∩ f(X).H) = q(f(V ).H) = q(f(V )) = f̂(U) ;

since q(B) is open, it follows that f̂(U) is open and therefore, f̂ is a homeo-
morphism onto its image f̂(X/G), that is to say, f̂ is an inclusion. 2

The following lemma gives a fundamental propery of spaces with a G-
map taking value in G, usefull in dealing with local triviality of homogeneus
spaces.

Lemma 1.2.5 Let X be a G-space and let f : X - G be a G-map; then
X ∼= f−1(uG)×G.

Proof – Define φ : f−1(uG) × G - X as (x, g) - xg. It is immedi-
ate to verify that fφ = pr2, the natural projection f−1(uG) × G - G,
and that φ is bijective. Furthermore, the map ψ : X - f−1(uG) × G,
x - (x(f(x))−1, f(x)), is a continuous inverse of φ. 2
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Corollary 1.2.6 If X is a free G-space and f : X - G is a G-map, then
X ∼= X/G×G.

We now recall the notion of principal action. Let E be a free G-space
and consider the subspace E∗ = {(x, xg) | x ∈ E, g ∈ G} of E × E. Since
the action of G is free, it is possible to define a function τ : E∗ - G
(called the translation function of the G-space E) by xτ(x, x′) = x′, for each
(x, x′) ∈ E∗, satisfying the following properties:

1. (∀x ∈ E) τ(x, x) = uG;

2. (∀x, x′ ∈ E) τ(x, x′)τ(x′, x) = uG;

3. (∀x, x′, x′′ ∈ E) τ(x, x′)τ(x′, x′′) = τ(x, x′′);

4. (∀x ∈ E, g ∈ G) τ(x, xg) = g.

The G-action is called principal if τ is a continuous function; we shall also
say that a free G-space with a principal action is a principal G-space. As it
will be apparent later on, principal actions play a fundamental role in the
definition of principal bundles.

Notice that Lemma 1.2.1 implies the following relation between separa-
bility in Top (weak separability in k(Top)) of the orbit space and closure of
E∗: E/G is Hausdorff iff E∗ is closed in E ×c E.

1.2.2 Equivariant cofibrations

Equivariant cofibrations are the natural extensions of cofibrations in the cat-
egory TopG of G-spaces. For a question of completeness we state next a
proposition which characterizes G-cofibrations (see [47, Chapter I, Section 5]
and [15, A.4]).

Proposition 1.2.7 Let X be a G-space and let A be a G-closed subspace of
X. The following statements are equivalent:

1. the pair (X,A) has the homotopy extension property in TopG;

2. the space X̂ = X×0∪A×I is a strong G-deformation retract of X×I;
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3. there are G-maps u : X - I and h : X × I - X (let G act
trivially on I) such that: (i) A = u−1(0), (ii) (∀x ∈ X) h(x, 0) = x,
(iii) (∀t ∈ I, x ∈ A) h(x, t) = x and (iv) (∀x ∈ X, u(x) < 1), h(x, 1) ∈
A. 4

Note that the space U = u−1([0, 1)) is an open G-space which retracts to A.

The next result (whose proof is left to the reader) shows the importance
of equivariant cofibrations in dealing with quotient spaces.

Proposition 1.2.8 Let A be a G-closed subspace of a G-space X and let i :
A - X be the inclusion map. Then the induced map ı̂ : A/G - X/G
is a closed cofibration ⇐⇒ i is a G-closed cofibration.

The next proposition is useful in the theory of principal bundles. First
notice that a free G-space X is locally trivial if the orbit space B = X/G is
covered by open sets Ui for which there exist G-equivariant homeomorphisms
φi : Ui ×G - p−1(Ui) over Ui.

Proposition 1.2.9 Let X be a principal G-space (as defined in Section 1.2)
with a G-action φ : X×G - X. Suppose that there exists a point xo ∈ X
such that (X, xoG) is a G-closed cofibration. Then, the quotient map q :
X - X/G is locally trivial.

Proof – Let τ : X∗ - G be the translation map defined by φ. For ev-
ery x ∈ X, the restriction of τ to the subspace {(x, xg)|g ∈ G} ⊂ X∗ is a
G-homeomorphism with G; then, xG and xoG are G-homeomorphic as sub-
spaces of X and so, (X, xG) is a G-closed cofibation. Let ux : X - I and
hx : X × I - X be the maps which define (X, xG) as a G-ndr. Take the
G-map f : Ux

- G defined by f(x) = h(x, 1) for all x ∈ Ux. Corollary
1.2.6 now shows that Ux is G-homeomorphic to Ux/G×G. 2

The two previous propositions combined have an important consequence:
let H be a closed subgroup of G ∈ TopGr; if (G,H) is a G-closed cofibration,
then q : G - G/H is locally trivial. This is the case of a closed subgroup
of a Lie group (Lie groups are CW-complexes – see [29]).

4In other words, (X, A) is a G-neighborhoud deformation retract (G-ndr).



1.2. RELATIONS, ACTIONS AND QUOTIENTS 19

1.2.3 The category TopH ∩ TopG

Next we investigate the spaces with a double action. This is the general set-
ting where equivariant theories originate. Let G and H be given topological
groups. An object X ∈ TopG ∩ TopH is a space X togeher with an action of
a group H (say, on the left) and an action of a group G (on the right). These
actions are said to be compatible if they commute with each other, that is to
say, if (hx)g = h(xg), for all x ∈ X, h ∈ H and g ∈ G. Notice that this gives
rise to a natural action

X × (H ×G) - X , (x, (h, g)) - hxg .

The following lemmas characterize the present situation.

Lemma 1.2.10 Let X ∈ TopG ∩ TopH with compatible actions. Then X/G
has an H action, X/H has a G action, and the spaces

(X/G)/H and (X/H)/G

are well defined and homeomorphic.

Proof – By [10, 3.2.5, Proposition 11] G acts on X/H with the action

φ′ : X/H ×G - X/H , (Hx, g) - H(xg)

and H acts on X/G with the action

ψ′ : X/G×H - X/G , (xG, h) - (hx)G ;

thus, the quotient spaces (X/H)/G and (X/G)/H are well defined.
Consider the compositions p′q and q′p of the natural projections

X
q

- X/H
p′

- (X/H)/G

and

X
p

- X/G
q′

- (X/G)/H .

The maps p′q and q′p define the equivalence relations R and S in X

xRx′ ⇐⇒ ∃g ∈ G, h ∈ H | x′ = (hx)g ,

xSx′ ⇐⇒ ∃g ∈ G, h ∈ H | x′ = h(xg) .
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The commutativity of the actions of G and H implies that

(∀x, x′ ∈ X) xRx′ ⇔ xSx′ .

Hence, the sets X/S = (X/H)/G and X/R = (X/G)/H coincide (up to
bijection). Furthermore, p′q = q′p and so, the final topology determined by
p′q on (X/H)/G coincides with that determined by q′p on the (same) set
(X/G)/H. Hence, (X/G)/H ∼= (X/H)/G. 2

Let us assume now that the actions of G and H on X coincide when
restricted to N = G ∩ H, with N normal in G and H. The next lemma
allows the transformation of this case into the general one given by two
independent compatible actions.

Lemma 1.2.11 Let X be a G-space and N a normal subgroup of G. Then,
there is an action of G/N on X/N such that the following diagram commutes:

X ×G
φ

- X

? ?

X/N ×G/N

φ̂

- X/N

Moreover, if X is a free and locally trivial G-space, then X/N is a free and
locally trivial G/N-space.

When the actions of G and H coincide on a central subgroup Z = G∩H,
the previous lemma allows us to define indipendent actions of G/Z and H/Z
on X/Z. Thus, because of Lemma 1.2.10, we obtain an action of H/Z on
(X/Z)/(G/Z) = X/G and an action of G/Z on (X/Z)/(H/Z) = X/H such
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that the following diagram commutes:

Z
i - G

p
- G/Z

j

? ?

iG

?

ı̂G = iG/Z

H
iH

- X
pH

- X/H

q

? ?

pG

?

pG/Z = p̂G

H/Z
ı̂H = iH/Z

- X/G
pH/Z = p̂H

- Y

where: iG and iH are the restrictions of the actions of G and H to {x0} ×G
and {x0} ×H respectively (for some x0 fixed in X); p, q, pG and pH are the
natural projections; p̂G and p̂G are the induced quotient maps and finally,

Y := (X/H)/(G/Z) ∼= ((X/Z)/(H/Z))/(G/Z) ∼=

∼= ((X/Z)/(G/Z))/(H/Z) ∼= (X/G)/(H/Z) .

In particular, we have proved the following result:

Lemma 1.2.12 Let G and H be topological groups whose intersection G ∩
H = Z is a central subgroup of both G and H. Let X be a space on which
both G and H act compatibly and suppose that the two actions coincide on
Z. Then, X/H has a G/Z-action, X/G has a H/Z-action and

(X/H)/(G/Z) ∼= (X/G)/(H/Z) .

Proposition 1.2.13 Let X ∈ TopH∩TopG with compatible actions. Suppose
that the action of H on X is principal and that the space X∗ = {(x, hx)|x ∈
X, h ∈ H} is closed in X × X. Finally, assume that the natural action of
H ×G on X is free. Then, the action of H on X/G is principal.

Proof – The group G acts on X∗ by ((x, x′), g) - (xg, x′g). Moreover,
the translation function τ : X∗ - H determined by the action of H on
X is continuous and is relation preserving (with respect to the relation on
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X∗ determined by the action of G and the relation on H determined by the
trivial subgroup {uH}); hence, τ defines a unique map τ̂ : X∗/G - H
such that the following diagram commutes:

X∗ τ - H

? ?

X∗/G
τ̂

- H

On the other hand, the inclusion map i : X∗ - X ×X is ∆-equivariant
relation bipreserving (here ∆ is the diagonal homomorphism); hence, by
Lemma 1.2.4, it passes to the quotient

X∗ i - X ×X

? ?

X∗/G
ı̂

- X/G×X/G

and ı̂ is an inclusion. Now we see that X∗/G ∼= (X/G)∗. 2

1.3 Bundles

A fibre bundle is a 5-tuple ξ = (E, p,B, F,G) satisfying the following prop-
erties:

1. E,B, F ∈ Top , p ∈ Top(E,B) and G is a topological group acting
effectively on the left of F ;

2. B is covered by a collection of open sets {Ui|i ∈ J} and for every i ∈ J
there exists a homeomorphism φi : Ui × F - p−1(Ui) over Ui (that
is to say, such that pφi = pr1);
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3. for every b ∈ Uij = Ui ∩ Uj 6= 0 and every y ∈ F , φ−1
i φj(b, y) =

(b, gij(b)y) and the function gij : Uij
- G is continuous.

The space B is the base, F is the fibre and G is the structural group of the
fibre bundle; finally, the maps gij are its transition functions. A fibre bundle
with structural group G is also called a G-bundle.

The transition functions are the key ingredients to work with fibre bun-
dles. The following formulation of the transition functions is very useful: for
every b ∈ Uij, define

φi,b : {b} × F - p−1(b) , φi,b(y) = φi(b, y) ;

then, for every y ∈ F , gij(b)y = φ−1
i,b φj,b(y) .

It is easy to verify that the transition functions satisfy the following con-
ditions:

TF1 (∀b ∈ Ui) gii(b) = uG ;

TF2 (∀b ∈ Uij) (gij(b))
−1 = gji(b) ;

TF3 (∀b ∈ Uijk) gki(b) = gkj(b)gji(b) .

The last condition can be written in a cyclic fashion:

(∀i, j, k ∈ J)(∀b ∈ Uijk) gij(b)gjk(b)gki(b) = uG .

Theorem 1.3.1 Let G be a topological group which acts effectively on a
space F (on the left); let B be a space with an open covering {Ui|i ∈ J}
and, for every i, j ∈ J for which Uij 6= ∅, we are given maps gij : Uij

- G
which satisfy conditions TF1, TF2 and TF3. Then there exists a fibre bundle
ξ = (E, p,B, F,G) with transition functions gij .

The preceding result allows us to construct a G-bundle with fibre G out
of any given G-bundle ξ: just observe that G acts on itself by multiplication.
Such a G-bundle with fibre G is the principal G-bundle associated to ξ. We
denote a principal G-bundle over B and with total space E simply by the
4-tuple notation (E, p,B,G).

Another important application of Theorem 1.3.1 is the construction of
the tangent bundle of a differentiable manifold. Let M be an n-manifold
with a Cr-atlas {(Ui, φi)|i ∈ J} (r ≥ 1); then

hij = φjφ
−1
i : φi(Uij) ⊆ IRn - φj(Uij) ⊆ IRn
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is a Cr-map. The fibre bundle τ(M) with base M , fibre IRn and group
GL(n, IR) determined by the transition functions

gij : Uij
- GL(n, IR) , b - J(hij)(φi(b))

where J(hij) is the Jacobian matrix of hij is the tangent bundle of M .

The transition functions are also used to “compare” bundles. Let ξ and
ξ′ be two G-bundles with the same base B and fibre F ; moreover, suppose
that both bundles are locally trivial over the same open covering of B (this
is always possible by simply intersecting the original open coverings of both
bundles). Then we say that ξ and ξ′ are equivalent if, for every i ∈ J , there
exists a map ρi : Ui

- G such that

(∀b ∈ Uij) g
′
ij(b) = (ρj(b))

−1gij(b)ρi(b) .

We introduce the notation ξ ∼= ξ′ to indicate that ξ and ξ′ are equivalent.
Equivalence of bundles is an equivalence relation; we shall not introduce a
special notation for the equivalence class of a bundle. It is clear that two
G-bundles are equivalent if, and only if, their associated principal G-bundles
are equivalent.

Next we study the structure of principal G-bundles more thoroughly.

1.3.1 The category BunG

The objects of BunG are principal G-bundles; a morphism f ∈ BunG(ξ, ξ′) is
a G-equivariant map f : E - E ′ which commutes with the projections p
and p′. Actually, any such morphism f turns out to be a G-homeomorphism
from E to E ′.

Proposition 1.3.2 Let ξ = (E, p,B,G) be a principal G-bundle. Then, the
following hold true:

1. E is a principal G-space;

2. B is homeomorphic to the orbit space E/G;

3. the local homeomorphisms φi : Ui ×G - p−1(Ui) over the open sets
Ui are G-equivariant.
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Proof – The action of G on E is given as follows: if x = φ−1
i (p(x), gi) and

g ∈ G, set xg = φi(p(x), gig). The translation function τ : E∗ - G is
then given locally as follows: if x ∈ p−1(Ui), define σi(x) = pr2φ

−1
i (x) ∈ G;

now, define τi(x, x
′) = (σi(x))

−1σi(x
′), for every (x, x′) ∈ p−1(Ui)

∗. Clearly, if
x also belongs to p−1(Uj), then τi(x, x

′) = τj(x, x
′). Thus, the global function

τ is continuous.
It remains to prove that τ satisfies the condition xτ(x, x′) = x′, for every

(x, x′) ∈ E∗. In fact,

xτi(x, x
′) = φi(p(x), σi(x)τi(x, x

′)) = φi(p(x), σi(x
′)) = x′ .

2

The following proposition is a converse of Proposition 1.3.2

Proposition 1.3.3 Let E be a locally trivial free G-space. Then,

1. E has a continuous translation function;

2. the 4-tuple ξ = (E, p,E/G,G) is a principal G-bundle.

Proof – It is enough to define the transition functions: take the functions
σi : p−1(Ui) - G be defined in the previous proposition and set

gij : Uij
- G , gij(p(x)) = σi(x)(σj(x))

−1 .

2

Propositions 1.3.2 and 1.3.3 together show the following:

Theorem 1.3.4 A 4-tuple ξ = (E, p,B,G) is a principal G-bundle ⇐⇒ E
is a locally trivial free G-space.

These facts simplify considerably life in the category of principal G-
bundles: for example, one can easily change the fibre of a principal G-bundle
simply making G act on the product E ×F by (x, y)g = (xg, g−1y), defining
EF = (E × F )/G and

pF : EF
- B = E/G , [(x, y)] - p(x) .

Equivalence of principal G-bundles is also easily recognizable: ξ ∼= ξ′ ⇐⇒
there exists a G-equivariant map f : E - E ′ over B.
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1.3.2 Homotopy classification of principal G-bundles

At this point a new actor enters the stage: Homotopy Theory. The purpose of
this move is to obtain some sort of classification theorem. We begin by saying
that a principal G-bundle ξ is numerable provided it is locally trivial over
an open covering with an open refinement given by a locally finite partition
of unity; thus, any principal G-bundle over a paracompact space (e.g., a
manifold, CW-complex, etc.) is numerable. We now define the contravariant
functor

EG : HTop - Set

which transforms a space B into the set5 EG(B) of all equivalence classes of
numerable, principal G-bundles over B and the morphism [f ] ∈ HTop(A,B)
into the function

EG([f ]) : EG(B) - EG(B) , ξ - f ∗(ξ)

where f ∗(ξ) is the numerable, principal G-bundle defined by pullback via any
representative f of [f ] (note that if f ∼= g then f ∗(ξ) ∼= g∗(ξ) ).

Next, let ξ̃ = (Ẽ, p̃, B̃, G) be a numerable, principal G-bundle and let
[−, B̃] be the well-known contravariant functor from HTop to Set. It is easy
to see that there is a natural transformation

T : [−, B̃] - EG

such that, for every B ∈ HTop,

T (B) : [B, B̃] - EG(B) , [f ] - f ∗(ξ̃) .

We now can state the following Classification Theorem:

Theorem 1.3.5 If Ẽ is contractible, the functors EG and [−, B̃] from HTop
to Set are naturally equivalent.

A principal G-bundle with contractible total space is called universal G-
bundle; the base space of a universal G-bundle is the classifying space of G.
There are various ways to construct a classifying space; these constructions
are all functorial. In Appendix A we shall describe the Milgram-Steenrod
construction of a universal bundle ξG = (EG, pG, BG, G) for any topological
group G.

5The fact that bundles are characterized by the transition functions guarantees that
EG(B) is indeed a set.
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Remark 1.3.6 Most of the bundles we encounter in this work have a para-
compact base; thus, they are numerable and so, unless we have numerability
for different reasons (see, for example, Theorem A.3.4), we do not refer ex-
plicitly to numerability and assume that the principal bundles we deal
with are numerable.

1.3.3 Equivariant bundles

The work on spaces with the action of two groups described in Section 1.2.3
naturally leads us to introduce the notion of equivariant bundles. In doing so,
we lose the “symmetry” of the actions in favour of a somehow more general
situation, where one of the actions is definitely characterized as a principal
bundle action, while the other is assumed to be consistent with the whole
bundle structure. More precisely, let G be a topological group, let Γ be a
compact topological group, and let α : Γ - Aut(G) be a homomorphism
into the automorphism group of G such that the left Γ-action

Γ×G - G , (γ, g) - αγ(g)

is continuous.
A (Γ, α,G)-equivariant bundle (or just (Γ, α,G)-bundle is a principal G-

bundle (E, p,B,G) together with a left Γ-action on E and B such that:

1. p is Γ-equivariant;

2. (∀γ ∈ Γ, g ∈ G, x ∈ E) γ(xg) = (γx)αγ(g) .

Observe that the second property just shows that the actions of G and Γ
on E are consistent, up to α (compare with Section 1.2.3). If α is trivial,
(E, p,B,G) is a Γ-equivariant principal G-bundle.

A (Γ, α,G)-bundle map is a principal G-bundle map that is also Γ equiv-
ariant.

The semidirect product Γ×α G, defined as the topological product with
multiplication

(γ, g)(γ′, g′) = (γγ′, αγ(g
′)g) ,

acts naturally on the total space E of a (Γ, α,G)-bundle (E, p,B,G):

(∀γ ∈ Γ, g ∈ G, x ∈ E) , ((γ, g), x) - (γx)g .
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The main difficulty in dealing with (Γ, α,G)-bundles is the fact that, in
general the action of Γ (and hence of Γ ×α G) in E is not free. To handle
this problem, we introduce an appropriate notion of local triviality.

We begin with the following result (see [45, Chapter I, Lemma 8.9]).

Lemma 1.3.7 Let Λ be a closed subgroup of Γ and suppose that the closed
subgroup H of Γ×α G is the graph of a map s : Λ - G:

H = {(λ, s(λ)) ∈ Γ×α G | λ ∈ Λ}

Then (Γ×α G), q,Γ/Λ, G) is a principal G-bundle.

The quotient maps

q : (Γ×α G)/H - Γ/Λ

of the type introduced in the previous lemma are called local objects. A
(Γ, α,G)-bundle (E, p,B,G) is said to be locally trivial if B has an open
covering by Γ-sets {Ui | i ∈ J} such that the restriction p−1(Ui) - Ui

admits a (Γ, α,G)-bundle map into a local object.
Unfortunately the complicated and abstract concept we just introduced

is necessary to set up the appropriate framework in which one can deal with
bundles endowed with the action of an extra group; however, this sort of
abstraction has its rewards! Let us just mention the following.

Let (E, p,B,G) be a principal G-bundle and let H be a topological group
acting on E consistently with G. We know that the quotient map

p̂ : E/H - B/H

is well defined; however, we do not know if it is locally trivial. In order to
find out a necessary condition for local triviality we study the problem from
the equivariant point of view.

Let (E, p,B,G) be a locally trivial (Γ, α,G)-bundle, and let U be one
of the open Γ-sets of B over which the bundle is trivial. Then we have an
equivariant map f : p−1(U) - (Γ×αG)/H which induces a quotient map
f̂ : p−1(U)/Γ - ((Γ ×α G)/H)/Γ. Notice that the the left (resp. right)
action of Γ (resp. G) on Γ×α G is defined by the restriction of the product
to Γ × {uG} (resp. {uΓ} × G); since these actions commute with the right
action of H, we have corresponding actions on (Γ ×α G)/H (see Lemma
1.2.10); furthermore, as U is Γ-invariant, so is p−1(U). Then, considering the
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right G-actions θ on p−1(U) and φ on (Γ ×α G))/H, we can construct the
following commutative diagram

p−1(U)×G
f × 1G

- (Γ×α G)/H ×G
@

@
@

@
@

@R 	�
�

�
�

�
�

(p−1(U)×G)/Γ ((Γ×α G)/H)/Γ×G

θ

?

θ̂

?

@
@

@ ĥ
@

@
@R ?

φ̂

?

φ

p−1(U)/Γ

f̂

- ((Γ×α G)/H)/Γ

�
�

�
�

�
�� I@

@
@

@
@

@
p−1(U)

f

- (Γ×α G)/H

where the composite map h = φ(f×1G) passes to the quotient, while the map
f × 1G itself does not. In general, this says nothing about local triviality of
the quotient bundle, since we do not have an action of G on p−1(U); however,
suppose that the following two conditions hold true:

1. α : Γ - Aut(G) is trivial, and

2. Γ×α G = Γ×G acts freely on E .

In that case the map ĥ of the diagram factors throught G×G as ĥ = φ̂(f̂×1G)
and φ̂ is exactly the multiplication in G, implying that

f̂ : p−1(U)/Γ - (Γ×G)/Γ = G

is G-equivariant, and thus (E/H, p̂, B/H,G) is a principal G-bundle (local
triviality is established).

A similar situation arises even when the action of the two groups are not
completely disjoint as in the previous Lemma 1.2.12; in this case we have the
following result.
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Proposition 1.3.8 Let (E, p,B,G) be a principal (Γ, G)-bundle. Suppose
that the actions of G and Γ on E coincide on a common subgroup Z of G
and Γ which is a central subgroup of both groups; moreover, suppose that the
natural action of Γ/Z ×G/Z on E/Z is free. Then, the quotient map

p̂ : E/Γ - B/Γ

defines a principal G/Z-bundle (E/Γ, p̂, B/Γ, G/Z).

Proof – Because Z is normal in G, we can use Lemmas 1.2.11 and 1.2.12 to
reduce p to the (Γ/Z,G/Z)-bundle (E/Z, p̃, B,G/Z), and proceed as before.

2

We are now going to focus our attention on (Γ, α,G)-bundles (E, p,B,G)
for which the homomorphism α : Γ - Aut(G) is trivial and the action
of Γ × G on E is free. Such equivariant bundles will be called principal
(Γ, G)-bundles.

We want to show that in this case local triviality can be defined in a
more convenient way, closer to the way it is defined for ordinary bundles.
In fact, we say that a principal (Γ, G)-bundle (E, p,B,G) is locally trivial if
there exists an open covering of B by Γ-sets {Ui}, and a family of principal
(Γ, G)-bundle maps6 fi such that the following diagram commutes

p−1(Ui)
fi

- Γ×G

p

? ?

pr1

Ui

f̂i

- Γ

With the aid of the maps fi we construct a set of homeomorphisms

(φi)
−1 : p−1(Ui) - Ui ×G , (φi)

−1 : x - (p(x), pr2fi(x))

that are Γ-equivariant with respect to the action

Γ× Ui ×G - Ui ×G , (γ, (b, g)) - (γb, g)

6Recall the actions of Γ and G on Γ×G are defined by restrictions of the multiplications.
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Thus, the set {(Ui, φi)} gives a Γ-equivariant local trivialization for p,
and hence, we obtain a local trivialization for p̂ : E/Γ - B/Γ:

(φ̂i)
−1 : p̂−1(Ui/Γ) = p−1(Ui)/Γ - (Ui/Γ)×G

(φ̂i)
−1 : [x] - ([p(x)], pr2fi(x)) .

Notice that the transition functions satisfy the condition

(∀x ∈ p−1(Uij)) ĝij p̂([x]) = gijp(x) .

Since the existence of a Γ-equivariant local trivialization is sufficient to
guarantee the local triviality of the quotient map we shall be content to
consider the previous definition of local triviality for a principal (Γ, G)-bundle
as the correct one.

We now revert to fibre bundles. Let F be a space with a left G-action
and let ξ = (E, p,B,G) be a principal (Γ, G)-bundle; the fibre bundle with
fibre F associated to ξ viewed just as a principal G-bundle is denoted by
ξ[F ] = (E×GF, p

F , B, F,G); the bundles ξ and ξ[F ] have the same transition
functions (see Theorem 1.3.1). Notice that the action

Γ× (E ×G F ) - E ×G F , (γ, [(x, y)]) - [(γx, y)]

defines a family of G-bundle maps and the map pF : E ×G F - B turns
out to be Γ-equivariant. Moreover, if {(Ui, φi)|i ∈ J} is a local trivialization
for ξ, we define a local trivialization {(Ui, φ

F
i )|i ∈ J} for ξ[F ] by setting

(φF
i )−1 : (pF )−1(Ui) - Ui × F

(φF
i )−1 : [(x, y)] - (p(x), pr2φi(x)y),

It follows that if (E, p,B,G) is a locally trivial principal (Γ, G)-bundle, then
the open sets Ui are Γ-sets and the maps φF

i are Γ-equivariant – with respect
to the natural action

Γ× (Ui × F ) - Ui × F , (γ, (b, y)) - (γb, y) .

Thus, we give the following definition: a fibre bundle ξ = (E, p,B, F,G) is
said to be a (Γ, G)-equivariant fibre bundle (or simply a (Γ, G)-bundle) if the
follwing conditions hold true: 1) the compact topological group Γ act freely
on E and B (on the left), and the map p : E - B is Γ-equivariant; 2) the
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opens sets Ui of the atlas {(Ui, φi)} of ξ are Γ-sets; 3) the fibre preserving
homeomorphisms φi : Ui × F - p−1(Ui) are Γ-equivariant.

It is now straightforward to verify that the principal bundle associated to
a (Γ, G)-fibre bundle is a principal (Γ, G)-bundle.

As we did for principal bundles we can associate a fibre bundle

ξ/Γ = (E/Γ, p̂, B/Γ, F,G)

to a (Γ, G)-fibre bundle ξ = (E, p,B, F,G); its atlas is given by {(Ui/Γ, φ̂F
i )},

and its transition functions are ĝF
ij([p(x)]) = gF

ijp(x). The corresponding
result to Proposition 1.3.8 is the following:

Proposition 1.3.9 Let ξ = (E, q, B, F,G) be a (Γ, G)-fibre bundle. Then
ξ/Γ = (E/Γ, p̂, B/Γ, F,G) is a fibre bundle with fibre F and structural group
G.

We now analyse what happens when a principal G-bundle is endowed
with the actions of two groups (notice that we could contemplate the case of
just one group but with two different actions).

Let (E, p,B,G) be a principal G-bundle which is also a principal (Γ, G)-
bundle and a principal (Γ′, G)-bundle for two topological groups Γ and Γ′ (we
are, of course, assuming that B/Γ = B/Γ′). Furthermore, suppose that there
exists a group homomorphism θ : Γ - Γ′. Then we obtain two quotient
bundles

(E/Γ, p̂, B/Γ, G) and (E/Γ′, p̂′, B/Γ′, G)

over the same base space. It is easy to see that these two bundles are equiv-
alent ⇐⇒ p has a Γ,Γ′-equivariant bundle automap that is to say, a map
f : E - E over B such that

(∀γ ∈ Γ, x ∈ E, g ∈ G) f((γx)g) = θ(γ)f(x)g .

For a (Γ, G) fibre bundle (E, p,B, F,G) all this is translated into the
existence of a Γ,Γ′-equivariant G-bundle autoequivalence, namely an au-
tomap f of E over B, whose restriction to the fibre takes values in G con-
tinuously as a function of the point in the base space; more precisely, if
fb := f |p−1(b) : p−1(b) - p−1(b) is the restriction of f to the fibre over b,
then we require that fb belongs to G ⊆ Homeo(F, F ) and that the map

B - G , b - fb
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is continuous.
We end this section with an example. Let

τ(Sn) = (TSn, pr1, S
n, IRn, GL(n, IR))

be the tangent bundle to the sphere Sn, n ≥ 1; its total space TSn is the space
of all pairs (b, ~v) ∈ Sn× IRn+1 with < b,~v >= 0; the map pr1 : TSn - Sn

is just the projection on the first factor; finally, we trivialize it over the open
sets

Ui := Ui+ ∪ Ui− = {b ∈ Sn | bi 6= 0} , i = 0, . . . , n .

The topological group ZZ2 acts freely on the base space Sn

φ : ZZ2 × Sn - Sn , (±1, b) - ± b ;

however, there are two free actions of ZZ2 on TSn:

φ1 : ZZ2 × TSn - TSn , (±1, (b, ~v) - (±b, ~v)
and

φ2 : ZZ2 × TSn - TSn , (±1, (b, ~v) - (±b,±~v) ;

in either case, the fibre bundle τ(Sn) can be viewed as a (ZZ2, GL(n, IR))-fibre
bundle. The pairs of actions (φ1, φ) and (φ2, φ) and Proposition 1.3.9 now
give rise to two quotient bundles

τ(Sn)/ZZ2(φ1, φ) and τ(Sn)/ZZ2(φ2, φ)

which, in general, are not equivalent: in fact,

τ(Sn)/ZZ2(φ1, φ) ∼= τ(IRP n)

– the tangent bundle to the real projective space IRP n – while

τ(Sn)/ZZ2(φ2, φ) ∼= τ(IRP n)⊗ γn
1

where γn
1 is the Hopf bundle over IRP n, that is to say, γn

1 is the line bundle
associated to the principal ZZ2-bundle

(Sn, p, IRP n,ZZ2 = S0,ZZ2)

where p is the map which identifies antipodal points of Sn. The total space
E of γn

1 is given by

E = (Sn × IR)/(x, r) ∼ (xt, rt) , t ∈ ZZ2 ;

moreover, according to [19, Chapter 5, Theorem 7.8 and Remark 7.9], γn
1 ⊗γn

1

is the trivial line bundle over IRP n. The line bundle γn
1 is also called canonical

line bundle over IRP n.
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Chapter 2

Gauge Groups

2.1 Gauge Groups

Let ξ = (E, p,B,G) be a principal G-bundle and let G(ξ) be the set of all
G-equivariant homeomorphisms over B of E. The set G(ξ) is endowed with a
natural group operation given by composition; moreover, we give to G(ξ) the
subspace topology from the compact-open topology of the space Map(E,E)
of all maps from E to itself. At this point we do not know if the algebraic
and topological structures of G(ξ) are or not compatible1; we shall see that
G(ξ) is indeed a topological group, but this fact will come out of a different
formulation of G(ξ). The argument is as follows.

Define the G-space Ad(G) to be the topological space G with the left
action

G× Ad(G) - Ad(G) , (g, ḡ) - g−1ḡg .

Now take the setMapG(E,Ad(G)) of allG-equivariant maps of E intoAd(G);
this set, together with the topology inherited from Map(E,Ad(G)) and the
group structure given by

(f, f ′) - ff ′ , (∀x ∈ E) ff ′(x) = f(x)f ′(x)

(with the inverse map of an arbitrary f ∈ MapG(E,Ad(G)) defined by
f−1(x) = (f(x))−1 far all x ∈ E) is a topological group. Finally, we show
that the homomorphism of topological groups

G(ξ) - MapG(E,Ad(G))

1We call the attention of the reader to [3] which deals with the problem of when the
space of self-homeomorphisms of a space is a topological group.

35
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defined by
f - hf , (∀x ∈ E) hf (x) = t(x, f(x)),

where t is the associated translation function as defined in section 1.3, is a
bicontinuous bijection (its inverse is given by

MapG(E,Ad(G)) - G(ξ) , h - fh , (2.1)

with fh defined by: (∀x ∈ E) fh(x) = xh(x) ).
The topological group G(ξ) is called gauge group or group of gauge trans-

formations of ξ.
We write explicitly this formulation of G(ξ):

G(ξ) ∼= MapG(E,Ad(G)) . (2.2)

The next result is an easy consequence of this formulation of G(ξ).

Theorem 2.1.1 If ξ is trivial or G is abelian, then

G(ξ) ∼= Map(B,G) .

We also give a description of the underlying set of a gauge group in terms
of the so-called Hu’s criterion which we describe anon (see [18]). Let ξ and
ξ′ be principal G-bundles over B and suppose that ξ (resp. ξ′) has transition
functions gij (resp. g′ij). Let Aut(G) be the group of all automorphisms of
G; define the group homomorphism

ρ : G×G - Aut(G) , ρ(g1, g2) : h - g1hg2
−1 .

Define the subgroup G∗ ⊂ Aut(G) by means of the exact sequence

0 - ZG
∆ - G×G

ρ
- G∗ - 0

where ∆ is the diagonal map. Let ξ∗(ξ, ξ′) be the bundle with base B, fibre
G and structural group G∗ determined by the transition functions g∗ij(b) =
ρ(gij(b), g

′
ij(b)). This is the Ehresmann bundle associated to ξ and ξ′. Let

Γ(B, ξ∗(ξ, ξ′)) be the set of all cross-sections of ξ∗(ξ, ξ′). Now, Hu’s criterion
says that there exists a bijective correspondence between the equivalences
of ξ and ξ′ and the elements of Γ(B, ξ∗(ξ, ξ′)). Hence, according to Hu’s
criterion, there is a bijection

G(ξ) ∼= Γ(B, ξ∗(ξ, ξ)) .
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The bundle ξ∗(ξ, ξ) can be constructed in a more direct way: firstly,
take the set of transition functions {gij|i, j ∈ J} of ξ; next, take the centre
ZG ⊂ G and the quotient map π : G - G/ZG ∼= I(G), the group of
inner automorphisms of G; finally, notice that I(G) acts on the left of G
and use the transition functions {πgij : Uij

- I(G)|i, j ∈ J} to construct
the fibre bundle F (ξ) = {Ẽ, p̃, B,G, I(G)}. The bundle F (ξ) is the so-called
fundamental bundle associated to ξ. It is now easy to verify that ξ∗(ξ, ξ) is
equivalent to F (ξ); hence, Hu’s criterion now tells us that the sets G(ξ) and
Γ(B,F (ξ)) are isomorphic:

G(ξ) ∼= Γ(B,F (ξ)) . (2.3)

There is a third interesting interpretation of the underlying set of a gauge
group. Let ξ[Ad(G)] be the fibre bundle with fibre Ad(G) and structural
group G obtained from ξ in the usual manner; we write it as

ξ[Ad(G)] = (E ×G Ad(G), p[Ad(G)], B,Ad(G), G) .

Let Γ(B, ξ[Ad(G)]) be the set of all cross-sections of ξ[Ad(G)]. According to
[19, Chapter 4, Theorem 8.1] there is a bijection

MapG(E,Ad(G)) - Γ(B, ξ[Ad(G)])

which associates to each G-equivariant map h : B - Ad(G) the cross-
section

sh : B - E ×G Ad(G)

such that, for every b ∈ B and every x ∈ p−1(b), sh(b) is equal to the
equivalence class mod. G of the pair (x, h(x)). Thus

G(ξ) ∼= Γ(B, ξ[Ad(G)]) . (2.4)

The local triviality of the principal G-bundle ξ gives rise to a very useful
formulation of its gauge transformations in terms of the transition functions.
As before, we assume ξ to be locally trivial over the open covering U =
{Ui|i ∈ J} of B and has transition functions gij.

We begin by defining the local gauge group of ξ associated to the open
covering U as the topological group

L =
∏
i∈J

Map(Ui, G)
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endowed with the product topology. Now, for every i ∈ J define ξi to be the
restriction of ξ to Ui; since ξi is trivial, the gauge group G(ξi) is homeomorphic
to the topological group Map(Ui, G), via the function

ϑi : G(ξi) - Map(Ui, G) , ϑi(fi)(b) = (φ−1
i,b fi,bφi,b)(uG)

(see Theorem 2.1.1) for every fi ∈ G(ξi) and every b ∈ Ui, and where fi,b is
the restriction of fi to the fibre p−1(b).

Next, define the map

ri : G(ξ) - G(ξi) , f - f |(p−1(Ui)) .

Lemma 2.1.2 The function

ϑ : G(ξ) - L , f - {ϑiri(f)|i ∈ J} .

is an embedding of topologial groups.

Having identified G(ξ) with ϑ(G(ξ)) ⊂ L we can characterize G(ξ) using
the transition functions of ξ:

Theorem 2.1.3 The group G(ξ) coincides with the subgroup

{{fi|i ∈ J} ∈ L|fj = g−1
ij figij on Uij} .

As consequence of the previous theorem, we can see once more that if
G is abelian, the gauge group G(ξ) coincides with M(B,G) (cfr. Theorem
2.1.1).

It is easy to see that if ξ ∼= ξ′ then G(ξ) ∼= G(ξ′): in fact, let ` : E - E ′

be a G-equivariant homeomorphism over B; then

Ad` : G(ξ) - G(ξ′) , f - `−1f`

is an isomorphism. However, note that the converse of this statement is not
true: the trivial ZZ-bundle S1 × ZZ - S1 and the exponential map bundle
e2πi : IR - S1 are not equivalent but have homeomorphic gauge groups.

Observe that for any finite set of principal G-bundles over a given space
B, one can select a single common local gauge group in such a way that the
embedding theorems above hold true for the gauge groups of all the bundles
concerned.
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Now we give a result on the gauge group of a sum of principal bundles.
More precisely, let {ξk|k = 1, . . . , n} be a set of principal Gk-bundles over B;
suppose that U = {Ui|i ∈ J} is an open covering of B over which the ξks are
all locally trivial; finally, let {gk

ij|i, j ∈ J} be the set of transition functions
of ξk. The transition functions

n⊕
k=1

gk
ij : Uij

-
n⊕

k=1

Gk

define a principal
⊕n

k=1Gk-bundle over B which we denote by
⊕n

k=1 ξk and
call sum of ξ1, . . . , ξn (if we are dealing with vector bundles, this is the Whit-
ney sum).

Theorem 2.1.4 For any set of principal Gk-bundles ξ1, . . . , ξn over B,

G(
n⊕

k=1

ξk) ∼=
n⊕

k=1

G(ξk) .

It is interesting to observe that an automorphism ϕ of the structural
group G of a principal G-bundle ξ gives rise to a new principal G-bundle ξϕ

which, in general, is not equivalent to ξ; however, the gauge groups of these
bundles are isomorphic, as one can see in the next lemma.

Lemma 2.1.5 Let ξ = (E, p,B) be a principal G-bundle. An automorphism
ϕ : G - G determines a bundle ξϕ whose gauge group G(ξϕ) is isomorphic
to G(ξ).

Proof – Let {gij|i, j ∈ J} be the set of all tanstion functions of ξ. Then,
because the maps ϕgij satisfy properties TF1, TF2 and TF3, {ϕgij|i, j ∈ J}
can be taken as the set of transition functions for the principal G-bundle ξϕ.

We now prove that ϑ induces an isomorphism

ϕ̃ : G(ξ) - G(ξϕ) , {fi} - {ϕfi}

In fact, for every i, j ∈ J such that Uij 6= ∅,

(ϕgij)
−1(ϕfi)(ϕgij) = ϕ(g−1

ij figij) = ϕfj

and so, by Theorem 3.1.1, {ϕfi} ∈ G(ξϕ). To show that ϕ̃ is surjective, take
arbitrarily {f̃i} ∈ G(ξϕ); from the equality

(ϕgij)
−1(f̃i)(ϕgij) = f̃j
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we conclude that
ϕ−1f̃j = g−1

ij (ϕ−1f̃i)gij

and so, {ϕ−1f̃i} ∈ G(ξ). The proof of the injectivity of ϕ̃ is also easy. 2

We conclude this section with a description of the centre of the gauge
group of a principal G-bundle ξ = (E, p,B,G). In order to conduct our
analysis, we must introduce the following condition:
[C1] (∀bo ∈ B) η : G(ξ) - G , f - f |p−1(bo)(uG) is a surjection.

Now take the homeomorphism

MapG(E,Ad(G)) - G(ξ)

introduced in 2.1. On the one hand, we note that this map is centre-
preserving and thus,

ZMapG(E,Ad(G)) ∼= ZG(ξ) .

On the other hand,

u ∈ ZMapG(E,Ad(G)) ⇐⇒

(∀f ∈MapG(E,Ad(G))) (∀x ∈ E) f(x)u(x) = u(x)f(x) .

Thus, if [C1] is satisfied, u ∈ ZMapG(E,ZAd(G)) ∼= Map(B,ZG) because
ZG is abelian. Therefore, we have the following homeomorphism:

ZG(ξ) ∼= Map(B,ZG) . (2.5)

2.2 The topology of gauge groups

In this section we give some results about the homotopy type of G(ξ). Our
first result is a consequence of the interpretation of G(ξ) given in 2.4 for a
particular ξ.

Theorem 2.2.1 Let ξ to be a principal G-bundle over a sphere Sn with G
compact. Let f : Sn - BG be a classifying map for ξ. Let Map(Sn, BG; f)
be the path-component of Map(Sn, BG) which contains f . Then G(ξ) has the
weak homotopy type of the loop space Ω(Map(Sn, BG; f)).
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Proof – Take the fibre bundles

ξ[Ad(G)] = (E ×G Ad(G), p[Ad(G)], Sn, Ad(G), G)

and
ξG[Ad(G)] = (EG ×G Ad(G), pG[Ad(G)], BG, Ad(G), G)

of which the former is equivalent to the fibre bundle induced from the latter
by f . Because Sn is paracompact, the map p[Ad(G)] : E×GAd(G) - Sn

is a (Hurewicz) fibration with fibre Ad(G) (see [35, Exercise 4.4.5] and [14]);
moreover, because G is compact, BG is paracompact (see the observation at
the end of Section A.3) and thus, the map pG[Ad(G)] : EG×GAd(G) - EG

is also a fibration.
The preceeding results and the exponential law (see [35, Theorem 1.1.2];

also, cfr. [35, Exercise 2.2.4]) show that the following diagram is a pullback
whose vertical arrows are fibrations.

Map(Sn, E ×G Ad(G)) - Map(Sn, EG ×G Ad(G))

q

? ?

qG

Map(Sn, Sn)
f ∗

- Map(Sn, BG)

Note that f ∗(1Sn) = f ; furthermore,

qG
−1(f) = q−1(1Sn) = Γ(B, ξ[Ad(G)]) ∼= G(ξ)

(the last bijection by 2.4).
A comparison of the exact sequences of the fibrations pG and pG[Ad(G)]

with the aid of the map over BG

h : EG
- EG ×G Ad(G) , h(x) = [x, eG]

shows that EG ×G Ad(G) is weakly contractible; using [21, Corollary 2.5] we
conclude that Map(Sn, EG×G Ad(G)) is also weakly contractible and there-
fore, the exact homotopy sequence of qG shows that G(ξ) has the same weak
homotopy type as Ω(Map(Sn, BG; f)). 2
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The arguments used in the previous result show that if G is compact and
B is locally compact Hausdorff, then G(ξ) is the fibre over f ∈Map(B,BG)
of the Hurewicz fibration

qG : Map(B,EG ×G Ad(G)) - Map(B,BG) .

Actually, without the assumptions on G and B required before, but using
different techniques and working within the category of weak Hausdorff k-
spaces we obtain a more general result; indeed, it is possible to construct a
fibration over Map(B,BG; f) with fibre G(ξ) over {f} and with contractible
total space (see [6, Proposition 3.1]); this leads towards the following result
(see [6, Theorem 3.3]):

Theorem 2.2.2 Let ξ be a principal G-bundle classified by f : B - BG

and let Map(B,BG; f) be the path-component of Map(B,BG) containing f .
Then the gauge group G(ξ) has the same homotopy type as the loop space
Ω(Map(B,BG; f)); furthermore, the homotopy equivalence in question pre-
serves the H-space structures of both spaces.

We use the previous theorem to produce a class of principal G-bundles
over a fixed space B with infinitely many non-isomorphic gauge groups. Take
B = S4 and G = SU(2) ∼= S3; the principal SU(2)-bundles over S4 are
classified by self-maps of S4 because the Hopf bundle γ = (S7, p, S4, S3) is 7-
universal (see [40, Sections 19.3 and 19.4]). Now take a map k : S4 - S4

of positive degree k and let ξk be the principal SU(2)-bundle over S4 induced
from γ via k. According to Theorem 2.2.2 G(ξk) and Ω(Map(S4, BSU(2); k)
have the same homotopy type and hence

π2(G(ξk)) ∼= π2(Ω(Map(S4, BSU(2); k) ;

on the other hand, BSU(2)
∼= S4 and thus, from [43, Lemma 3.10], we conclude

that
π2(G(ξk) ∼= ZZ24k ⊕ ZZ12

showing that the second homotopy group of G(ξk) depends on k.
Let bo be a fixed point of the base space B of ξ and let G1(ξ) be the sub-

group of G(ξ) determined by all gauge transformations of ξ whose restriction
to p−1(bo) is the identity map; also, let Map∗(B,BG; f) be the path compo-
nent of f of the space Map∗(B,BG) of base-point preserving maps from B
to BG. The next result is a based version of Theorem 2.2.2 (see [6, Corollary
5.7]).
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Theorem 2.2.3 Let ξ be a principal G-bundle classified by f : B - BG

and let Map∗(B,BG; f) be the path-component of Map∗(B,BG) containing f .
Then G1(ξ) has the homotopy type of the loop space Ω(Map∗(B,BG; f)); fur-
thermore, the homotopy equivalence in question preserves the H-space struc-
tures of both spaces.

The next result also comes from [6] (see [6, Theorem 6.1]).

Theorem 2.2.4 Suppose that the path-components of Map(B,BG) (resp.
Map∗(B,BG)) have the same homotopy type; then G(ξ) (resp. G1(ξ)) has the
homotopy type of Map(B,G) (resp. Map∗(B,G)). Furthermore, the homo-
topy equivalences connecting the respective spaces preserve the multiplicative
structures.

The interest of the theorem rests mostly on the based case: indeed, a
sufficient condition for the path components of Map∗(B,BG) to be of the
same homotopy type is that B is an associative COH-space (for example, B is
a suspension). A sufficient condition for the path components of Map(B,BG)
to have the same type is to require that BG is an associative H-space (see
[44, page 31]). For example, BG could be an Eilenberg-MacLane space or
a group; however, the latter hypothesis is uninteresting because BG has a
continuous multiplication induced from that of EG ⇐⇒ G is abelian (see
Proposition A.5.2) and then, by Theorem 2.1.1, G(ξ) ∼= Map(B,G), thus
bypassing 2.2.4.

The spaces G1(ξ) and G(ξ) are more intimately related than just by the
relation subspace/space; in fact, let

η : G(ξ) - G , f - f |p−1(bo)(uG) ;

the following theorem holds true (see [6, Proposition 5.8]).

Theorem 2.2.5 The map η : G(ξ) - G is a Hurewicz fibration with fibre
G1(ξ) over uG.

This result will play an interesting role in the development of Chapter
3 (see Condition [C1] there); it is also useful in computing certain gauge
groups.

Theorem 2.2.4 compares the homotopy type of G(ξ) (resp. G1(ξ)) to
that of the mapping space Map(B,G) (resp. Map∗(B,G)), provided we
are prepared to assume that the path-components of the space Map(B,BG)
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(resp. Map∗(B,BG)) have the same homotopy type; if this is not the case, we
still can compare the homotopy groups of the gauge groups and the mapping
spaces (within a certain range). What we have in mind is the following
theorem.2

Theorem 2.2.6 Suppose that G is (n-1)-connected (with n > 1) and that B
is a CW-complex of dimension m < 2n. Then, for every 0 ≤ j ≤ 2n−m−1,

πj(G(ξ)) ∼= πj(Map(B,G)) ,

πj(G1(ξ)) ∼= πj(Map∗(B,G)) .

Proof – Let ρ : BG
- ΩΣBG be the adjoint to the identity map of the

(reduced) suspension ΣBG into itself. The hypothesis on the connectivity of
G implies that BG is n-connected and hence, ρ is a (2n+ 1)-equivalence (for
the definition of n-equivalence see [35, Exercise 6.2.2] or [39, page 404]; for
the proof of the result quoted above see [39, Corollary 10, Ch.8,Sec.5]). The
map ρ induces a map

ρ′ : Map(S1, BG) - Map(S1,ΩΣBG) , g - ρg

such that the next diagram commutes:

Map(S1, BG)
ρ′

- Map(S1,ΩΣBG)

ev

? ?

ev

BG
ρ

- ΩΣBG

(Here ev is the evaluation map at the base point of S1.) But the columns of
the diagram are fibrations with fibres Map∗(S

1, BG) and Map∗(S
1,ΩΣBG)

(over the canonical base points of BG and ΩΣBG, respectively); then, the
long exact sequences of homotopy groups corresponding to these fibrations
and the five lemma imply that ρ′ is a 2n-equivalence.

Let L(B,Map(S1, BG); f) be the space of all lifts of f to Map(S1, BG);
it is clear that ρ′ induces a map

L(ρ′) : L(B,Map(S1, BG); f) - L(S1,Map(S1,ΩΣBG); ρf) .

2For a more general result see [6, Theorem 6.3].
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We are going to show that L(ρ′) is a (2n−m)-equivalence. In fact, take Sj

with 0 ≤ j ≤ 2n−m, and form the maps

f̃ := fpr2 : Sj ×B - BG

and

f̃ ′ : Sj ∨B - Map(S1, BG) , f̃ ′ := (fpr2)|(Sj × {bo}) ∪ θ

where θ is a selected base-point of L(B,Map(S1, BG); f); next, apply [39,
Theorem 12, Ch. 7, Sec. 8] to the commutative diagram

Sj ∨B
f̃ ′

- Map(S1, BG)
ρ′

- Map(S1,ΩΣBG)

? ? ?

Sj ×B
f̃

- BG
ρ

- ΩΣBG

to obtain the stated result. This means that, for every j ≤ 2n−m− 1,

πj(L(B,Map(S1, BG; f)) ∼= πj(L(B,Map(S1,ΩΣBG; ρf)) .

A double application of the exponential law proves that

ΩMap(B,BG; f) ∼= L(B,Map(S1, BG); f)

and thus, for every j ≤ 2n−m− 1,

πj(ΩMap(B,BG; f)) ∼= πj(ΩMap(B,ΩΣBG; ρf)) .

On the other hand, because ΩΣBG is an associative H-space with inverse, the
path components of Map(B,ΩΣBG) have the same homotopy type; hence,
if c denotes the constant map of B to the base point of ΩΣBG,

(∀j ≤ 2n−m− 1) πj(ΩMap(B,BG; f)) ∼= πj(ΩMap(B,ΩΣBG; c)) .

Now we observe that

πj(ΩMap(B,ΩΣBG; c)) ∼= πj(Map(B,ΩBG), c) ∼= πj(Map(B,G), c) .
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Theorem 2.2.2 completes the proof. The proof of the based case follows the
same lines. 2

We give an application of Theorem 2.2.6. Let ξ = (E, p, Sm, G) be a
principal G-bundle with G (n − 1)-connected and m < 2n (we assume that
n is strictly larger than 1). Then,

(∀j ≤ 2n−m− 1) πj(G(ξ)) ∼= πj+m(G)⊕ πj(G) .

To see this, take the fibration

ev : Map(Sm, G) - G , h - h(eo)

(where eo is the base-point of Sm); its fibre (over the identity uG ∈ G) is
Map∗(S

m, G) and moreover, ev has a section. This implies that

(∀j > 0) πj(Map(Sm, G), c) ∼= πj+m(G)⊕ πj(G)

and thus, we obtain the statement using 2.2.6.
We now make two remarks about the gauge group of a principal G-bundle

ξ over a sphere Sn, with n ≥ 1. The first of these is that as a consequence of
Theorem 2.2.4 we conclude that G1(ξ) and ΩnG have the same type. Next,
we notice that the long exact sequence of homotopy groups of the fibration η :
G(ξ) - G and the previous observation show that the homotopy groups
of G(ξ) are related to those of G by an exact sequence of the type

. . . - πk(G) - πk+n−1(G) -

- πk−1(G(ξ)) - πk−1(G) - . . .

(2.6)

We conclude this section with a discussion about the gauge groups of
Lorentz bundles. The topological group

O(n− 1, 1) = {L ∈ GL(n, IR)|LtµnL = µn}

where µn is the Minkowski matrix

µn =

(
In−1 0
0 −1

)
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is a Lorentz group. The group O(n−1, 1) has an important subgroup, namely
the subgroup O↑(n−1, 1) of all orthochronous transformations that is to say,
of the matrices L ∈ O(n − 1, 1) with detL = 1 and Ln,n > 0; geometrically
the special Lorentz group O↑(n, 1) is the connected component of O(n− 1, 1)
containing the identity element.

We define a Lorentz bundle to be a principal bundle over an n-dimensional
manifold B with structure group O↑(n − 1, 1). We wish to investigate the
homotopy groups of the gauge group of a Lorentz bundle; the key step in
pursuing this investigation is the next theorem which shows that the special
Lorentz group O↑(n − 1, 1) has the same homotopy type as the special or-
thogonal group SO(n − 1). The proof we are going to present is due to M.
Marcolli (see [23]). Before we go into the theorem we make a few observa-
tions. The Minkowski matrix µn defines a bilinear form in IRn of signature
-1:

< x, y >µn=
n∑

i=1

xiyi − xnyn = xtµny ;

moreover, O(n−1, 1) is the group of all transformations of IRn which maintain
this form (see [46]). The pseudosphere P in IRn is the set

P = {x ∈ IRn|xtµnx = ±}

with the topology induced from IRn; the following result holds true:

Lemma 2.2.7 The special Lorentz group O↑(n− 1, 1) is the subgroup of all
Lorentz transformations which map the upper layer of P , namely

P− = {x ∈ IRn|xtµnx = −1, xn > 0} ,

into itself.

Theorem 2.2.8 O↑(n− 1, 1) and SO(n− 1) have the same homotopy type.

Proof – Let {~e1, . . . , ~en} be an orthonormal basis of IRn with ~en ∈ P−. A
transformation defined by a matrix

Lζ =

 In−2 0 0
0 coshζ sinhζ
0 sinhζ coshζ


is said to be a hyperbolic rotation. Observe that Lζ ∈ O↑(n− 1, 1), for every
ζ ∈ IR; moreover, the hyperbolic rotations just defined form a subgroup H of
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O↑(n − 1, 1). Because the elements of O↑(n − 1, 1) map P− into itself (see
Lemma 2.2.7), we conclude that every L ∈ O↑(n− 1, 1) can be written as a
product

L = R1LζR2

with

Ri =

(
Ri

n−1 0
0 1

)
Ri

n−1 ∈ SO(n− 1), i = 1, 2 .
The proof of the theorem is concluded with the observation that the group

H is contractible: just define

F : H× I - H , (Lζ , t) - Ltζ .

2

Corollary 2.2.9 Let ξ be a Lorentz bundle over S3. Then

πk(G(ξ)) ∼=
{

ZZ if k = 1
0 if k 6= 1 .

Proof – From the previous theorem we conclude that O↑(2, 1) and SO(2)
have the same homotopy type; next, because of 2.2.4 G1(ξ) and Ω3(O↑(2, 1))
are of the same type; finally, use the long exact sequence 2.6, and the fact
that πk(SO(2)) = 0 for every k 6= 1 and π1(SO(2)) ∼= ZZ. 2

We indicate two other ways to show the previous result.
1) The long sequence of homotopy groups associated to the bundle

(ESO(2), p, BSO(2), SO(2))

implies that

πq+1(BSO(2)) ∼= πq(SO(2)) ∼=
{

ZZ if q = 1
0 otherwise .

and therefore, BSO(2) has the type of an Eilenberg-MacLane space K(ZZ, 2).
This implies that

EO↑(2,1)(S
3) ∼= [S3, BSO(2)] ∼= H2(S3,ZZ) ∼= 0
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and thus, ξ is trivial, implying that G(ξ) ∼= Map(S3, SO(2)) and so, the
homotopy groups of G(ξ) are as stated in the Corollary.
2) Use the long exact sequence of homotopy groups associated to the fibration
(G(ξ), η, O↑(2, 1)) with fibre G1(ξ) ∼= Map∗(S

3, O↑(2, 1)).

2.3 The classifying space of G(ξ)

The various constructions of classifying spaces for a topological group G (e.g.,
the Milgram-Steenrod construction of Appendix A) give rise to a classifying
space BG(ξ)

. We now give a useful description of the homotopy type of BG(ξ)
.

Theorem 2.3.1 Let ξ = (E, p,B,G) be a principal G-bundle classified by a
map f : B - BG; suppose also that B has the type of a finite CW-complex
and that G is a CW-complex. Then BG(ξ)

and Map(B,BG; f) have the same
homotopy type.

Proof – We first observe that BG(ξ)
has the same weak homotopy type as

Map(B,BG; f): this follows from [26, Corollary 7.7]. To prove that they have
the same type it suffices to show that they have the type of CW-complexes
and then use Whitehead’s Realizability Theorem (see [15, Theorem 2.5.1]).
Next, we notice that both G(ξ) and Map(B,BG; f) have the type of CW-
complexes. Because G is a CW-complex, the Milgram-Steenrod construction
yields a classifying space BG with the type of a CW-complex; then, because
B has the type of a compact CW-complex, we conclude from [15, Theorem
5.3.4] that Map(B,BG) has the type of a CW-complex; finally, we use [15,
Proposition 1.4.11] to obtain that Map(B,BG; f) has the type of a CW-
complex. Next, we use Theorem 2.2.2 and [15, Theorem 5.3.4] to prove that
BG(ξ)

has the type of a CW-complex. 2
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Chapter 3

Fundamental equivalence and
conjugation of gauge groups

3.1 Conjugation in the local gauge group

As we have noticed in Chapter 2, equivalent principal G-bundles over a space
B give rise to isomorphic gauge groups; more precisely, if ` : ξ - ξ′ is a
G-equivariant homeomorphism, the isomorphism between the gauge groups
G(ξ) and G(ξ′) is given by the “adjoint map” Ad`(f) = `−1f`. If we assume
ξ and ξ′ to be locally trivial over the same open covering (recall that we can
do this simply by intersecting the open covers of ξ and ξ′), then G(ξ) and
G(ξ′) can both be viewed as subgroups of the common local gauge group L;
in this case, G(ξ) and G(ξ′) are conjugate subgroups of L. We indicate this
fact by writing G(ξ) ∼C G(ξ′).

At this point, it is natural to ask whether stable equivalence also induces
conjugation of the gauge groups. The answer to this question is given in
the negative by the following example. The principal SO(4)-bundles ξ =
(S4 × IR, p, S4, SO(4)) and ξ′ = (TS4, π, S4, SO(4)) are stably equivalent
(there is a trivial line bundle ε such that ξ⊕ε ∼= ξ′⊕ε). If G(ξ) ∼C G(ξ′) they
would have the same topological structure as subgroups of L; then, because
of Theorem 2.1.1, both gauge groups G(ξ) and G(ξ′) would be homeomorphic
to the function space Map(S4, SO(4)). However, because of [21, Corollary
2.5] we obtain that

π1(G(ξ)) ∼= π1(Map(S4, SO(4)) ∼= π1(SO(4))⊕ π5(SO(4)) ∼= ZZ2 ⊕ ZZ2 ⊕ ZZ2

51
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and using [38] we obtain that

π1(G(ξ′)) ∼= ZZ2 ⊕ ZZ2 .

We would like to develop further this conjugacy relation. Our analysis
will be conducted from a local point of view; hence, we shall assume that
whenever we talk about “conjugate” gauge groups, the principal G-bundles
which produce them are localy trivial over a common open covering U =
{Ui|i ∈ J}. Moreover, these gauge groups are viewed as subgroups of the
common local gauge group L =

∏
i∈J Map(Ui, G).

For the benefit of the reader, we put both Lemma 2.1.2 and Theorem
2.1.3 under a single roof:

Theorem 3.1.1 Let ξ be a principal G-bundle over a space B with an open
covering U = {Ui|i ∈ J}. Then, the map

ϑ : G(ξ) - L =
∏
i∈J

Map(Ui, G) , f - {ϑiri(f)|i ∈ J}

is an embedding of topologial groups. Furthermore, the group G(ξ) coincides
with the subgroup

{{fi|i ∈ J} ∈ L|fj = g−1
ij figij on Uij} .

We wish to observe that the conjugation of two gauge groups does not
depend on the transition functions selected. In fact, assume that ξ (resp.

ξ′) have transition functions gij and g̃ij (resp. g′ij and g̃′ij). Then, for every
i ∈ J , we can find maps hi : Ui

- G and ki : Ui
- G such that

g̃ij = hj
−1gijhi , g̃ij = kj

−1gijki

and the functions

G(ξ) - G(ξ) , {fi} - {h−1
i fihi}

and
G(ξ′) - G(ξ′) , {f ′i} - {k−1

i f ′iki}

are inner automorphisms. Now assume that G(ξ) and G(ξ′) are conjugate;
then, we can find an element {`i} ∈ L such that

G(ξ′) = {`i}−1G(ξ){`i}
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and in particular, we may suppose that, for every i ∈ J , f ′i = `i
−1fi`i. Hence,

writing qi = hi
−1fiki for every i ∈ J , we obtain the equality

ki
−1f ′iki = (hiqi)

−1fi(hiqi)

proving that the conjugation relation is maintained by the change of transi-
tion functions.

Remark 3.1.2 For technical reasons we shall require from now, and to the
end of the section, that any point b ∈ B is non-degenerate, that is to say,
the inclusion {b} - B is a closed cofibration (this is the case whenever B
is a manifold or a CW-complex).

As before, let ZG be the centre of G and let π : G - G/ZG = I(G) be
the quotient map. We indicate by EZG(B) the set of equivalence classes of
principal ZG-bundles over B and by EG(B) the set of equivalence classes of
principal G-bundles over B.

Lemma 3.1.3 The set EZG(B) is an abelian group which acts on the set
EG(B).

Proof – We first describe the action. Take a principal ZG-bundle λ over B
with transition functions {cij|i, j ∈ J}, and an arbitrary principal G-bundle
ξ over B with transition functions gij. Now observe that the composite func-
tions cijgij : Uij

- G satisfy properties TF1, TF2 and TF3 (because the
elements of ZG commute with all elements of G) and thus, they define a new
principal G-bundle which we denote by λ� ξ. This operation is independent
of the representative on each class. In particular, if ξ = λ′ is a principal
ZG-bundle over B, then λ� λ′ ∈ EZG(B) and indeed, the operation � gives
EZG(B) an abelian group structure. The unit element is given by the trivial
line bundle. 2

Observe that if ξ′ = λ� ξ then, the fundamental bundles F (ξ) and F (ξ′)
associated to ξ and ξ′ (see Chapter 1 for the definition) coincide; moreover,
the gauge groups G(ξ) and G(ξ′) coincide as sets. This last statement’s
converse is not true in general; however, it is correct if ξ satisfies condition
[C1] introduced in section 2.1 and which we reproduce here for completeness:
[C1] (∀bo ∈ B) η : G(ξ) - G , f - f |p−1(bo)(uG) is a surjection.
In fact, if {fi} ∈ G(ξ) = G(ξ′), then, for every i, j ∈ J such that Uij 6= ∅,

fj = gij
−1figij and fj = g′ij

−1
fig

′
ij .
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These equalities prove that, for every i ∈ J ,

(g′ijg
−1
ij )fi = fi(g

′
ijg

−1
ij ) .

Condition [C1] then shows that for every g ∈ G and every bo ∈ B, (g′ijg
−1
ij )(bo)

commutes with g, that is to say,

g′ijg
−1
ij : B - ZG

and thus, ξ′ = λ� ξ.
We are going to prove that conjugacy of gauge groups is related to the

fundamental groups associated and to the action introduced in Lemma 3.1.3
provided that condition [C1] is satisfied, together with the requirement that
all maps Ui

- I(G) can be lifted to G (see condition [C2] below).
Let us spell out our new condition:

[C2] (∀i ∈ J)(∀h̄ii : Ui
- I(G))(∃hi : Ui

- G) h̄i = πhi .

Theorem 3.1.4 Suppose that ξ satisfies conditions [C1] and [C2]. For any
principal G-bundle ξ′ over B with transition functions g′ij the following state-
ments are equivalent:

1. F (ξ′) ∼= F (ξ) ;

2. G(ξ′) ∼C G(ξ) ;

3. there exists a principal ZG-bundle over B such that

ξ′ ∼= λ� ξ .

Proof – 1. ⇒ 2. The hypothesis implies that for every i ∈ J there exists a
map h̄i : Ui ∈ I(G) such that

πg′ij = h̄j
−1

(πgij)h̄j .

Because of condition [C2] every h̄i admits a lift hi : Ui
- G and so we

can define

h∗ : L - L , {fi} - {hi}−1{fi}{hi} = {h−1
i fihi}

which, together with Lemma 2.1.2, shows that G(ξ′) is conjugate to G(ξ).
2. ⇒ 3. If G(ξ′) is conjugate to G(ξ), for every i ∈ J , there exixts hi :
Ui

- G such that
G(ξ′) = {hi}−1G(ξ){hi} .
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Hence,
(∀{f ′i} ∈ G(ξ′)(∃{fi} ∈ G(ξ))(∀i ∈ J) f ′i = h−1

i fihi ;

in other words, for every {fi} ∈ G(ξ) and every pair of indices i, j ∈ J such
that Uij 6= ∅,

hj
−1fjhj = g′ij

−1
hi
−1fihjg

′
ij .

From this equality we deduce that

hj
−1gij

−1figijhj = g′ij
−1
hi
−1fihig

′
ij

and therefore,
hig

′
ijhj

−1gij
−1fi = fihig

′
ijhj

−1gij
−1 .

This implies that (∀{fi} ∈ G(ξ))(∀b ∈ Uij),

(hig
′
ijhj

−1gij
−1)(b)fi(b) = fi(b)(hig

′
ijhj

−1gij
−1)(b) .

Now we use condition [C1] to conclude that, for every g ∈ G and every
b ∈ Uij,

(hig
′
ijhj

−1gij
−1)(b)g = g(hig

′
ijhj

−1gij
−1)(b) ;

thus, for every i, j ∈ J such that Uij 6= ∅, we have the maps

cij = hig
′
ijhj

−1gij
−1 : Uij

- ZG

and these satisfy conditions TF1, TF2 and TF3 of transition functions, thus
defining a principal ZG-bundle λ over B; furthermore, from the definition of
these maps we conclude that ξ′ ∼= λ� ξ.
3. ⇒ 1. The hypothesis now indicates that, for every i ∈ J , there exists a
map hi : Ui

- G such that

g′ij = hi
−1cijgijhj . (3.1)

Then, for every g ∈ G and every b ∈ Uij, we have that

(hig
′
ijhj

−1gij
−1)(b)g = g(hig

′
ijhj

−1gij
−1)(b) .

A straightforward computation now shows that

πg′ij = h̄j
−1

(πgij)h̄j

and therefore, the bundles F (ξ′) and F (ξ) are equivalent. 2
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Two principal G-bundles over B which satisfy the equivalent conditions
of Theorem 3.1.4 are said to be fundamentally equivalent. Notice that fun-
damental equivalence is an equivalence relation; furthermore, as seen in the
beginning of this section, two equivalent principal G-bundles are fundamen-
tally equivalent; however, the converse is not true: as observed in Section
2.1, the trivial ZZ-bundle S1 × ZZ - S1 and the exponential map bundle
e2πi : IR - S1 are not equivalent but have isomorphic gauge groups.

At times it is possible to “reduce” the structural group of a bundle; next
we give a first result on the behaviour of fundamental equivalence with respect
to this “reduction” (definition below). Let ξ be a principal G-bundle over B
with transition functions {gij|i, j ∈ J} and let H be a closed subgroup of G
with inclusion map ι : H - G; we say that ξ admits a reduction to the
structural group H if there is a principal H-bundle ξ̃ over B with transition
functions {g̃ij|i, j ∈ J} such that ξ and the principal G-bundle over B with
transition functions {ιg̃ij|i, j ∈ J} are equivalent.

Lemma 3.1.5 Let ξ and ξ′ be two principal G-bundles which admit a reduc-
tion to a closed subgroup H ⊂ G. Suppose that ZH ⊂ ZG. Then, if the
reductions of ξ and ξ′ to H are fundamentally equivalent, so are ξ and ξ′.

Proof – It follows by comparing the transition functions via relations like
3.1. 2

In Chapter 4 we shall take up again this theme.
We now observe that conditions [C1] and [C2] are not so unsual. For

example, they are clearly satisfied whenever G is abelian. Furthermore, con-
dition [C1] holds true if G is path-connected because in that case the map
η : G(ξ) - G is a fibration (see [6]). As for condition [C2], we prove the
following:

Lemma 3.1.6 Suppose that the open sets Ui of the distinguished open cov-
ering are all contractible. Then condition [C2] holds true.

Proof – Take the exact sequence of groups

0 - ZG - G - I(G) - 0

and the exact sequence of sheafs

0 - SZG
- SG

- SI(G)
- 0
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obtained from the pre-sheafs of continuous functions from the open subsets
of B into these groups. According to the non-abelian version of [17, Theorem
2.4.2] we obtain, for every open subset of B, an exact sequence

0 - Γ(U,SZG) - Γ(U,SG) - Γ(U,SI(G))

where Γ(U,−) indicates that we are dealing with the sections of the appropri-
ate sheaf over U . The cokernel of the last homomorphism of the above exact
sequence is the cohomology group H1(U,SZG) (see [17, Theorem 2.10.1]); the
result now follows from the fact that the open sets Ui are contractible. 2

The hypothesis of Lemma 3.1.6 is satisfied when B is a CW-complex or a
manifold with a riemannian metric because in both cases B can be covered
by contractible open sets: the reference for the former case is [13, Proposition
6.7] while for the latter is [8, Theorem 5.1]. These open covers are called good
covers by some authors - see [8].

In the present context, where conjugation of gauge groups is beeing stud-
ied, the existence of a good cover of B has interesting consequences. We
start with the following:

Lemma 3.1.7 Let U = {Ui|i ∈ J} be a good cover of B. Then any principal
G-bundle over B is locally trivial over U.

Proof – Let ξ = (E, p,B,G) be a principal G-bundle. Since the inclusion
map ιi : Ui

- B is homotopic to a constant map, the induced principal
G-bunde (p−1(Ui), p, Ui, G) is trivial (see [19, Chapter 4, Theorem 9.9]). Now
E is a localy trivial principal G-space over U and so, by Theorem 1.3.4, ξ is
a principal G-bundle, locally trivial over U. 2

Under these circumstances, if U is a fixed good cover of B, the topological
group

L =
∏
i∈J

Map(Ui, G)

contains as subgroups the gauge groups of all principal G-bundles with base
space B. Hence, we can divide the set of the gauge groups of all principal
G-bundles over B into conjugacy classes. We denote by CG(ξ) the conjugacy
class of the gauge group G(ξ). We shall take up again this theme later on.
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3.2 Isomorphism and conjugacy of

gauge groups

It is clear that if G(ξ) ∼C G(ξ′), then these gauge groups are isomorphic;
however, if two principal G-bundles over B have isomorphic gauge groups, it
not necessarily true that the gauge groups are conjugate. In this section we
describe an example of that assertion, given by M. Marcolli in [24].

Take G to be the dihedral group of order 8 given by a clockwise ninety
degree rotation of the square around its centre (call it r), its compositions
r2, r3, r4 = 1 and, the four flips (two around the diagonals, called m and n,
and two around the horizontal and vertical axis, called h and v). We endow
this group with the discrete topology. Let ϕ : G - G be the isomorphism
defined by

r - r
m - h
n - v
h - m
v - n .

We now take B = S1 with the open covering {U1, U2} where U1 is the open
arc containing the point (−1, 0) and limited by the points π

2
− ε and 3π

2
+ ε,

and U2 is the open arc containing the point (1, 0) and limited by π
2

+ ε and
3π

2
− ε.
The intersection U12 is the union of the open arcs

U = {θ|π
2
− ε < θ <

π

2
+ ε}

and
V = {θ|3π

2
− ε < θ < 3

π

2
+ ε} ;

Define the transition funtion g12 : U12
- G by the following condition:

for every b ∈ U12,

g12(b) = { gU(b) = h , if b ∈ U
gV (b) = 1 , if b ∈ V .

The set of transition functions {gij|i, j = 1, 2} gives rise to a principal G-
bundle ξ and the set {ϕgij|i, j = 1, 2}, to the principal G-bundle ξϕ. Ob-
serve that the bundles ξ and ξϕ are not equivalent; however, according to
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Lemma 2.1.5, these two bundles have isomorphic gauge groups (indeed, the
patient reader can verify, by direct computation, that G(ξ) ∼= {1, r2, v, h}
and G(ξϕ) ∼= {1, r2, n,m}, both isomorphic to the so-called “Viergruppe”).

Let us prove that G(ξ) and G(ξϕ) cannot be conjugate. Suppose that they
were so. Then, we could find an element {hi|i ∈ J} ∈ L such that

G(ξϕ) = {hi}G(ξ){hi}−1 ;

thus, for every {fi} ∈ G(ξ), the element {fϕ
i } defined by

fϕ
i = hifih

−1
i

belongs to G(ξϕ). But, according to Theorem 2.1.3, for every i, j ∈ J , we
have the following equalities in Uij:

fj = gjifigij and fϕ
j = gϕ

jif
ϕ
i g

ϕ
ij ;

therefore,
higijfjgjih

−1
i = gϕ

ijhjfjh
−1
j gϕ

ji

or, in other words,

(h−1
j gϕ

jihigij)fj = fj(h
−1
j gϕ

jihigij) .

This means that for every i, j ∈ J , the element λji = h−1
j gϕ

jihigij commutes
with the jth component of any element of G(ξ) and thus, in the present
context in which G is the dihedral group of order eight, λji : Uij

- G
takes values in the subgroup S = {1, r2, v, h} ∼= G(ξ). Moreover, observe
that one can write

gϕ
ji = hjλjigjih

−1
i .

The previous considerations give rise to the following two equalities:

gϕ
U = h1λUgUh

−1
2 and gϕ

V = h2λV gV h
−1
1 ;

however, a straighforward computation shows that it is not possible to find
elements h1, h2 ∈ G and λU , λV ∈ S such that

m = h2λV λUh
−1
2 and h1 = h2λV .

Notice that in this example [C1] is not valid and hence we cannot use
Theorem 3.1.4; however, the reader can prove with no difficulty that the
fundamental bundles F (ξ) and F (ξ′) associated, respectively, to ξ and ξ′, are
equivalent!
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Chapter 4

Conjugacy classes of vector
bundles

4.1 Characteristic Classes

In this chapter we study the conjugacy classes of the gauge groups of real
and complex vector bundles over a fixed base space B which is assumed to
be a connected, smooth, paracompact manifold endowed with a Riemannian
metric.

We recall that real (resp. complex) n-vector bundles have structural
group GL(n, IR) (resp. GL(n, IC)). However, because we are taking our vec-
tor bundles to be smooth over a riemannian manifold, we can endow their
total spaces with a Riemannian structure, and therefore, we can reduce their
structural groups to O(n) and U(n), respectively, in the real and complex
cases (see [8, Sections 6 and 20]). Therefore, we shall deal with principal
bundles having for structural group either the orthogonal group O(n) or the
unitary group U(n).

Furthermore, as we have seen in Section 3.1 we can take a good cover
for B, that is to say, an open covering U = {Ui|i ∈ J} with all the Ui’s
contractible. Hence, because of Lemma 3.1.7 all principal O(n)- or U(n)-
bundles over B are locally trivial over U; this means that the gauge group of
any principal O(n)- or U(n)-bundle over B is a subgroup of the local gauge
group L and thus, we can arrange all these gauge groups into conjugacy
classes.

The contents of this chapter are based on [25].

61
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We begin by observing that Theorem 3.1.4 takes on the following format:

Theorem 4.1.1 G(ξ′) ∼C G(ξ) if, and only if, there exists a line bundle λ
over B such that ξ′ ∼= ξ ⊗ λ.

Proof – It is enough to show that under the present circumstances, con-
ditions [C1] and [C2] of Section 3.1 hold true. Condition [C2] is satisfied
because of Lemma 3.1.6. As for [C1], we distinguish two cases. In the
unitary case, [C1] follows from the connectivity of U(n) and the fact that
η : G(ξ) - U(n) is a fibration. In the real case, the map η is onto SO(n)
– the path-component of O(n) which contains the unit element – and this is
a sufficient condition for the equivalence of the three statements of Theorem
3.1.4. 2

Using the terminology introduced in Chapter 3, we can say that two (real
or complex) vector bundles ξ and ξ′ as above are fundamentally equivalent
if, and only if, there exists a line bundle λ such that ξ′ ∼= ξ ⊗ λ.

At this point we wish to study the relationship between the characteristic
classes of two fundamentally equivalent vector bundles. A description of the
general theory of characteristic classes can be found in the books by D.
Husemoller [19] and J. Milnor and J. Stasheff [30].

4.1.1 Complex vector bundles

Our first result follows from [7, page 493]:.

Lemma 4.1.2 Let ξ and ξ′ be two fundamentally equivalent complex vector
bundles of rank n over B. Then the Chern classes of ξ and ξ′ are related by
the formula

ck(ξ
′) =

k∑
j=0

(
n− j
k − j

)
cj(ξ)c1(λ)k−j . (4.1)

Corollary 4.1.3 Suppose that the Riemannian manifold B is also endowed
with a CW-complex structure. Let ξ and ξ′ be two fundamentally equivalent
complex vector bundles over B. Suppose that nc1(λ) 6= 0 in H2(B,ZZ). If the
restrictions of ξ and ξ′ to the 2-skeleton B(2) are equivalent, then ξ ∼= ξ′.

Proof – From the previous lemma we conclude that

c1(ξ
′) = c1(ξ) + nc1(λ) .
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Take the inclusion ι : B(2) - B and notice that

0 = c1(λ|B(2)) = ι∗(c1(λ)) ∈ H2(B(2),ZZ) ;

but ι∗ is injective because H2(B,B2; ZZ) = 0 since B/B(2) has no cells in
dimension less than 3. 2

We are going to show with an example that the condition on the first
Chern class of λ is necessary. Let η be the complexification of the Hopf
bundle γ5

1 over IRP 4 and form the complex 2-bundle ξ = η ⊕ η over IRP 4.
The bundle η is not trivial; however, using [19, Chapter 5, Theorem 7.8] we
conclude that ξ is fundamentally equivalent to the trivial 2-bundle ε2 over
IRP 4 (take λ = η); this same theorem shows that 2c1(η) = 0. Now, according
to [1, Theorem 7.3], the restrictions of ξ and ε2 to IRP 2 are equivalent.

Since ξ is a smooth vector bundle, the Chern classes ci(ξ) can be expressed
- modulo torsion - in terms of symmetric invariant polynomials in the cur-
vature 2-form Ω. As we shall see, this method yields interesting and new
results which are not visible just from Lemma 4.1.2. In order to conduct our
analysis in an ordered fashion, we give a quick review of the principal defini-
tions and ideas about connections and curvature in complex vector bundles;
our main sources of informations are the books of M. Nakahara [32] and Y.
Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick [12]. First, some
notation: L(U(n)) denotes the Lie algebra of U(n) and, for a given open set
Ui ∈ U, T (Ui) and T ∗(Ui) represent, respectively, the tangent and cotangent
spaces to Ui. Next, recall that the Lie algebra L(U(n)) is isomorphic to the
tangent space to U(n) at the unit element In. There are several equivalent
ways to define a connection on a principal U(n)-bundle ξ = (E, p,B, U(n)),
the first of which is very geometrical: a connection on ξ is a unique splitting
of the tangent space TxE, for every x ∈ E, as a direct sum of a vertical sub-
space VxE and a horizontal subspace HxE, such that horizontal spaces on the
same fibre are related by a linear map induced by a right action Rgx = xg;
one also requires that smooth vector fields on E separate into smooth hori-
zontal and vertical vector fields. In practice, we need to obtain the splitting
TxE = HxE ⊕ VxE in a systematic fashion; this can be done with the Lie
algebra valued one-form ω ∈ L(U(n))⊗ Ω1(E) 1: this is just a projection of
TxE onto VxE ∼= L(U(n)). The curvature two-form Ω is the covariant deriva-
tive of the connection one-form ω; hence, Ω ∈ L(U(n))⊗Ω2(E). Connection

1We indicate the space of smooth r-forms over a manifold M by Ωr(M).
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and curvature are related by the following Cartan structure equation:

(∀X, Y ∈ TxE) Ω(X, Y ) = dω(X, Y ) + [ω(X), ω(Y )] ,

which is also written as
Ω = dω + ω ∧ ω .

As in the case of gauge transformations, it is convenient to view connec-
tions and curvatures in terms of the open sets of U; accordingly, for each
i ∈ J , take a cross-section σi : Ui

- p−1(Ui) and define the local (gauge)
potential

Ai := σi
∗(ω) ∈ L(U(n))⊗ Ω1(Ui) .

The set A = {Ai|i ∈ J} is called (Yang-Mills) potential. Conversely, given an
L(U(n))-valued one-form Ai on Ui and a cross-section σi : Ui

- p−1(Ui),
there exists a one-form ωi ∈ L(U(n)) ⊗ Ω1(Ui) such that Ai = σi

∗(ωi) (see
[32, Theorem 10.5]). In order to define ω uniquely out of the local potentials
(in other words, so that ωi = ωj on Uij), the local potentials must satisfy the
following compatibility conditions:

Aj = g−1
ij Aigij + gjid(gij) . (4.2)

The local form F i of the curvature Ω at Ui is given by

F i = σi
∗(Ω) ,

where σi is a cross-section at Ui. The two-forms F i are called local fields;
F = {F i|i ∈ J} is called (Yang-Mills) field strength. In this context, we also
write Ωi = p∗(F i).

The equations corresponding to the Cartan structure equations are:

F i = dAi +Ai ∧ Ai (4.3)

with the local transformation conditions

F j = g−1
ij F igij (4.4)

for every i, j ∈ J .
Now we are ready to talk about Chern classes. Let G be a group of

complex square matrices (sayGL(n, IC) or U(n)) and let LG be its Lie algebra.
We say that a symmetric, k-linear mapping

f : LG× . . .× LG - IR
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is Ad-G invariant if, for every g ∈ G and every k-tuple (V1, ..., Vk) ∈ LG ×
. . .× LG,

f(AdgV1, . . . ,AdgVk) = f(V1, . . . , Vk) ,

where AdgVi = g−1Vig. The following is the main theorem of the theory of
characteristic classes (see [12, Theorem 1, V BIS] or [32, Theorem 11.1]):

Theorem 4.1.4 (Chern-Weil) Let f be an Ad-G invariant symmetric k-
linear mapping of LG to IR, let ξ = (E, p,B,G) be a principal G-bundle
and let Ω be the curvature two-form of a connection ω of ξ. The exterior
differential form f(Ω) of degree 2k defined by

f(Ω)(v1, . . . , vk) =
1

2k!

∑
σ

sign(σ)f(Ω(vσ(1), vσ(2)) . . . (Ω(vσ(2k−1), vσ(2k)))

where σ is a permutation of the set {1, 2, . . . , k}, has the following properties:
(i) f(Ω) projects to a unique 2k-form γk on B (i,e., p∗(γk) = f(Ω)) such that
d(γk) = 0;
(ii) the element [γk] of the De Rham cohomology group H2k

DR(B, IR) is inde-
pendent of the choice of the curvature two-form Ω.

The reader should note that this theorem could be stated in terms of poten-
tials and relative field strengths.

If we choose a basis for LG and, for every V ∈ LG, we set

f(V ) := f(V, . . . , V )

then, f(V ) is a polynomial of degree k in the components of V . The algebra of
Ad-G-invariant symmetric multilinear mappings is identified with the algebra
of Ad-G-invariant polynomials. At this point notice that the coefficients
fk(V ) of the characteristic polynomial of a matrix V ∈ LG, namely

det(λIn −
i

2π
V ) =

n∑
k=0

fk(V )λn−k , (4.5)

are Ad-G-invariant polynomials. In particular, if V = Ω, the closed 2k-form
γk such that p∗(γk) = fk(Ω) gives rise to the kth-Chern class of ξ:

ck(ξ) = [γk] ∈ H2k
DR(B, IR) .
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The total Chern class of ξ is given by

c(ξ) = 1 + c1(ξ) + . . .+ cn(ξ) ∈
n⊕

j=0

H2j
DR(B, IR) .

From the general properties of the characteristic polynomials, we conclude
that f1(Ω) = tr( i

2π
Ω) and that fn(Ω) = det( i

2π
Ω). We also note that the

defining equation 4.5 yields the total Chern class of ξ simply by replacing
the variable λ by 1. Finally, we observe that from 4.5 we retrieve the axioms
– see [19, Chapter 17, Section 3] – which characterize Chern classes (valued
in the real cohomology ring of the base space).

The set Aξ of potentials (or connections) on ξ is not empty: indeed, there
are infinitely many connections on a smooth vector bundle (with paracompact
base - see [12, Theorem, pg. 363]). Actually Aξ is an affine space, that is
to say, a vector space with a selected origin: hence, if A,A′ ∈ Aξ, so is
(1 − t)A − tA′, for every t ∈ IR (see [33, Chapter VIII]). Our next result
shows that there is a bijection between the affine spaces of all connections of
two fundamentally equivalent n-bundles ξ and ξ′:

Lemma 4.1.5 If ξ′ ∼= λ⊗ ξ, then there is a bijection

θ : Aξ′
- Aξ .

Proof – Let gij, g
′
ij and cij be, respectively, the transition functions of the

vector bundles ξ, ξ′ and λ. As in Theorem 3.1.4 (3.⇒ 1), the hypothesis
implies that there exists a set of maps {hi : Ui

- S1|i ∈ J} such that

g′ij = hi
−1cijgijhj . (4.6)

Now take a partition of unity {ρi|i ∈ J} subordinated to the open covering
U of B and, for every i ∈ J , define the 1-form

θi =
∑
k∈J

ρkcikdcki . (4.7)

Take arbitrarily A ∈ Aξ and, for every i ∈ J , define

A′
i = hi

−1Aihi + hi
−1dhi + θi ; (4.8)

we wish to prove that the local one-forms A′
i define a connection A′ ∈ Aξ′

that is to say, according to 4.2, the one-forms A′
i must satisfy the equation

A′
i = g′ijA′

jg
′
ji + g′ijd(g

′
ji) .
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Using equalities 4.6 and 4.8, the right hand side of the previous formula gives
rise to the following sequence of equalities:

g′ijA′
jg
′
ji + g′ijd(g

′
ji) =

= hi
−1cijgijhj(hj

−1Ajhj + hj
−1dhj +

∑
k∈J

ρkcjkdckj)hj
−1cjigjihi+

+(hi
−1cijgijhj(hj

−1)d(hj
−1cjigjihi) =

= hi
−1gijAjgjihi + hi

−1gij((dhj)hj
−1)gjihi+

+hi
−1gijhj(

∑
k∈J

ρkcjkdckj)hj
−1gjihi + hi

−1gij(hj(dhj
−1))gjihi+

+hi
−1gij(cijdcij)gjihi + hi

−1gijdgjihi + hi
−1dhi .

Since hj(dhj)
−1 +(dhj)hj

−1 = 0, the second and fourth terms of the last sum
cancel out; moreover, the adjoint action of any element of U(n) is trivial on
L(U(n)) and thus, we conclude that

A′
i = hi

−1(gji
−1Ajgji + gij(dgji))hi + hi

−1(dhi) +
∑
k∈J

ρkcjkdckj + cij(dcji) .

Because
∑

k∈J ρk = 1, we can write the last two summands as follows:∑
k∈J

ρkcjkdckj + cij(dcji) =
∑
k∈J

ρkcjkdckj + (
∑
k∈J

ρk)cij(dcji)

by the cyclicity property of the transition functions (see [TF3]) and the prod-
uct property of the exterior derivative, we conclude that∑

k∈J

ρkcjkdckj + (
∑
k∈J

ρk)cij(dcji) =
∑
k∈J

ρkcikdcki .

Therefore,

g′ijA′
jg
′
ji + g′ijd(g

′
ji) = hi

−1Aihi + hi
−1dhi + θi = A′

i

concluding our proof. 2

The next theorem compares the Chern characters of two complex n-
bundles which are fundamentally equivalent when their structural groups
can be reduced to a subgroup H with discrete centre. We already know
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from Lemma 3.1.5 that if the reductions to H of ξ and ξ′ are fundamentally
equivalent, then ξ and ξ′ themselves are fundamentally equivalent and there-
fore, their Chern classes are related by equation 4.1; however, the next result
shows that in this case the Chern classes of ξ actually coincide with those of
ξ′.

Theorem 4.1.6 Let ξ and ξ′ be two complex n-bundles with structural group
U(n) reduced to a subgroup H such that ZH is discrete. If these bundles are
fundamentally equivalent with respect to the structural group H then, for
every i = 1, . . . , n, ci(ξ) = ci(ξ

′).

Proof – Because the Lie algebra of ZH is trivial, the one-forms θi defined
in 4.7 vanish. This implies that

A′
i = hi

−1Aihi + hi
−1dhi

and therefore, the local fields (and corresponding local curvatures) are re-
lated by F ′

i = Adhi
F i. The statement of the theorem now follows from the

definition of the total Chern class. 2

We wish to observe that the conclusion of Theorem 4.1.6 above does not
follow from equalities 4.1 because the central step in the proof of theorem is
to show that there is a flat connection on the line bundle λ and this implies
that its Chern class is a torsion element. We also note that the converse of
the above theorem is false: in fact, on the one hand, λ has a flat connection
⇐⇒ it has locally constant transition functions (see [20, page 6]) and on
the other hand, one can easily construct a line bundle with locally constant
transition functions that are not contained in any finite order subgroup of
U(1).

4.1.2 Real vector bundles

Our first result has to do with the Pontrjagin classes of two fundamentally
equivalent real vector bundles and is a direct consequence of Theorem 4.1.6.

Proposition 4.1.7 Two fundamentally equivalent real n-bundles have the
same Pontrjagin classes in the De Rham cohomology ring of their base space.
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Proof – The Pontrjagin classes pi(ξ) of a real n-bundle ξ are obtained from
its Chern classes by complexification:

pi(ξ) := (−1)ic2i(ξ ⊗ IC) .

Now, by complexification, we can embed O(n) into U(n). Since ξ ⊗ IC and
ξ′ ⊗ IC are fundamentally equivalent over O(n) and ZO(n) = ZZ2, Theorem
4.1.6 shows that the Chern characters of the complexified bundles are equal;
thus, we have the result stated. 2

At this point we want to observe that the previous proposition might be
false if we work in the integral cohomology ring of the base space, as we can
see from the following example. Let γ5

1 be the Hopf bundle over IRP 4 and
let ξ = γ5

1 ⊕ γ5
1 ; because of [19, Chapter 5, Theorem 7.8], ξ is fundamentally

equivalent to the trivial real 2-bundle ε2 over IRP 4 (take λ = γ5
1). However,

ξ has a non-vanishing top Pontrjagin class: this can be seen by taking the
complexification η = γ5

1 ⊗ IC and observing that because η ∼= η, c1(η) is a
non-zero element of order 2 in H2(IRP 4,ZZ).

Next, we recall that to each real n-vector bundle ξ over a space B we can
associate a sequence of cohomology classes

wi(ξ) ∈ Ȟ i(B,ZZ2)

i = 0, . . . , n which satisfies certain axioms listed in [30], for example. These
are the so-called Stifel-Whitney classes of ξ. Our first result is similar to
Lemma 4.1.2:

Lemma 4.1.8 Let ξ and ξ′ be two fundamentally equivalent real vector bun-
dles of rank n over B. Then the Stiefel-Whitney classes of ξ and ξ′ are related
by the formula

wk(ξ
′) =

k∑
j=0

(
n− j
k − j

)
wj(ξ)w1(λ)k−j (4.9)

with coefficients taken modulo 2.

Proof – See [7, page 497]. 2

The first and second Stiefel-Whitney classes have a particular geometric
interest; in support to this statement we give here the following two results:
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1) if M is a riemannian manifold and τ = (TM, π,M) is its tangent bundle,
then M is orientable if, and only if, w1(τ) = 0; 2) if M is orientable, then
there exists a Spin bundle overM if, and only if, w2(τ) = 0 (see [32, Theorems
11.21 and 11.23]). We wish to compare the first two Stiefel-Whitney classes
of two fundamentally equivalent real vector bundles, However, before we
do this, we recall briefly an alternative method of defining Stiefel-Whitney
classes for smooth vector bundles over riemannian manifolds; this method is
based on properties of the Čech cohomology of B (unlike the Chern classes,
the Stiefel-Whitney classes cannot be constructed via the curvature two-form
Ω associated to a curvature form ω of ξ).

We begin by taking a good cover U = {Ui|i ∈ J} of B, and for every
n ≥ 1, let Ui0,...,in be the intersection Ui0 ∩ . . . ∩ Uin 6= ∅. A Čech n-cochain
is a map

f(i0, . . . , in) : Ui0,...,in
- ZZ2

which is totally symmetric under any permutation σ of i0, . . . , in. Next,
consider the multiplicative group Cn(U,ZZ2) of all Čech n-cochains, for all
possible non-empty intersections of n + 1 open sets in U. Finaly, define the
coboundary operator

δn : Cn(U,ZZ2) - Cn+1(U,ZZ2)

(δnf)(i0, . . . , n+ 1)) =
n+1∏
k=0

f(i0, . . . , ı̂k, . . . , in+1)

(as usual, the symbol ̂ means that the variable under it has been cancelled).
It is easy to prove that δ2 = 1. Hence,

(∀n ≥ 0) im δn = Bn(U,ZZ2) ⊂ ker δn+1 = Zn(U,ZZ2) ;

by definition, the nth-Čech cohomology group of U is the quotient group

Ȟn(U,ZZ2) = Zn(U,ZZ2)/B
n(U,ZZ2) .

Now let V = {Vj|j ∈ J} be another good cover of B and suppose that V

refines U, that is to say, there exists a “refinement” function α : J - I
such that

(∀j ∈ J) Vj ⊂ Uα(j) .

Such a refinement function induces a chain complex homomorphism C∗: for
each n ≥ 0, define

Cn(α) : Cn(U,ZZ2) - Cn(V,ZZ2)
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(Cn(α)f)(j0, . . . , jn) = f(α(j0), . . . , α(jn)) ;

thus, α induces homomorphisms

αn : Ȟn(U,ZZ2) - Ȟn(V,ZZ2)

for each n ≥ 0. This homomorphism between the cohomology groups is actu-
ally independent of the refinement function, because two refinement functions
from V to U produce homotopic chain complex functions. All this means that
the set {Ȟ∗(U,ZZ2|U} is a direct system of graded abelian groups; the Čech
cohomology of B is then defined as the direct limit

Ȟ∗(B,ZZ2) = lim
U
Ȟ∗(U,ZZ2) .

Let ξ be a principal O(n)-bundle over a riemannian manifold M covered
by a good cover U. In order to construct the first Stiefel-Whitney class w1(ξ)
we consider the transition functions gij : Uij

- O(n) and define

f1(i, j) : Uij
- ZZ2

by the condition: for every b ∈ Uij, f1(i, j)(b) = det(gij(b)). Clearly,
f1(i, j) = f1(j, i) and hence, f1(i, j) ∈ C1(U,ZZ2). On the other hand, from
the cyclicity condition gijgjkgki = uG, we conclude that

(δf1)(i, j, k) = det(gij) det(gjk) det(gki) = 1

and therefore, f1 ∈ Z1(U,ZZ2). We define w1(ξ) to be the image in Ȟ1(B,ZZ2)
of the cohomology class [f1] ∈ Ȟ1(U,ZZ2).

Now we define the second Stiefel-Whitney class of ξ. Suppose that the
principal O(n)-bundle ξ is orientable that is to say ⇐⇒ the structure group
O(n) can be reduced to SO(n) (see [8, Chapter I,Proposition 6.4]). Recall
also that, for every positive integer n there is a universal covering map

φ : Spin(n) - SO(n)

with fibre ZZ2; the simply connected space Spin(n) is actually a topological
group (see [19, Chapter 12]). Now, for every b ∈ Uij, take a lift g̃ij(b) of gij(b)
and define

f2(i, j, k) : Uijk
- ZZ2 , b - g̃ij(b)g̃jk(b)g̃ki(b) .
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In this case too, f2 is a cocycle and we define w2(ξ) to be the image in
Ȟ2(B,ZZ2) of the cohomology class [f2] ∈ Ȟ2(U,ZZ2).

Now we are ready to prove the following two results which give a more
accurate comparison of the first two Stiefel-Whitney classes of two funda-
mentally equivalent real vector bundles.

Theorem 4.1.9 Let ξ and ξ′ be two real, even dimensional, fundamentally
equivalent vector bundles over B. Then, w1(ξ

′) = w1(ξ).

Proof – We know that, because ξ and ξ′ are fundamentally equivalent, the
transition functions of these two vector bundles are related by an equation
of the type

g′ij = hi
−1cijgijhj .

(see 4.6). But we are dealing with vector bundles whose structural group is
O(2m) and so, det(cij) = 1. Then, from the equation above we conclude that

det(g′ij) = det(gij) det(hi)
−1 det(hj)

and therefore, the cocycles f1(i, j) and f ′1(i, j) differ by a coboundary:

f ′1(i, j) = f1(i, j)(δf̄)(i, j) .

2

We can obtain this from Equation 4.9, provided we take k = 1, n even, and
we write ZZ2 additively.

Theorem 4.1.10 Let ξ and ξ′ be two real, orientable 2m-vector bundles for
which there exists a line bundle λ such that ξ′ ∼= ξ ⊗ λ. If w2(⊕2mλ) = 1,
then w2(ξ) = w2(ξ

′).

Proof – The transition functions of both bundles take values in SO(n);
moreover, because ξ and ξ′ are fundamentally equivalent, these transition
functions are related by a relation like 3.1, namely:

g′ij = hi
−1cijgijhj .

Lift the maps hi and cij to Spin(2m):

h̃i : Ui
- Spin(2m) ,
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g̃ij : Uij
- Spin(2m) ;

these liftings give rise to a lifting of g′ij, namely

g̃′ij = h̃i

−1
c̃ij g̃ijh̃j .

But from w2(ξ) = 1 we conclude that

g̃ij g̃jkg̃ki = 1

and so,
g̃′ij g̃

′
jkg̃

′
ki = c̃ij c̃jkc̃ki .

But c̃ij c̃jkc̃ki = 1 because w2(⊕2mλ) = 1 by assumption; thus, w2(ξ
′) = 1. 2

4.2 The isotropy group of a vector bundle

Let ξ be a (principal) real or complex vector bundle over B and let I(ξ) be
the set of all line bundles over B such that λ⊗ξ ∼= ξ; with the tensor product
operation this set becomes a group, indeed a subgroup of the group EO(1)(B)
(resp. EU(1)(B)) of all classes of equivalent principal real (resp. complex)
line bundles over B. The group I(ξ) is the isotropy group of ξ.

The following observation shows that the isotropy group of a vector bun-
dle ξ can assume a key role in the game of characterizing the conjugacy class
CG(ξ). Suppose that I(ξ) = 0; then, according to Theorem 3.1.4, there exists
a bijective correspondence between the set CG(ξ) and the set EO(1)(B) (resp.
EU(1)(B)). Thus, if I(ξ) = 0 the Classification Theorem 1.3.5 implies that:

1. Real Case: CG(ξ) ∼= H1(B,ZZ2) ;

2. Complex Case: CG(ξ) ∼= H2(B,ZZ) .

As we shall see after the statement of Theorem 4.2.5, the isotropy group
of a trivial bundle is not necessarily trivial.

Now we give a simple example of a non-trivial vector bundle whose
isotropy group is trivial.

Theorem 4.2.1 Let ξ be a real vector bundle of odd dimension over B. Then
IO(1)(ξ) = 0.
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Proof – We begin by observing that λ ⊗ ξ ∼= ξ ⇐⇒ λ is trivial. In fact,
from equations 4.9 we conclude that

w1(ξ) = (dim ξ)w1(λ) + w1(ξ) ;

because the Stiefel-Whitney classes are elements of the ZZ2-cohomology ring
of B and dim ξ is odd, it follows that w1(ξ) = 0 and hence, λ = 1 is the
trivial line bundle over B. 2

The analysis of the first Stiefel-Whitney class conducted in the previous
theorem clearly yields no results if ξ is even-dimensional; this method is also
fruitless in case ξ is an even-dimensional trivial real bundle. For complex
vector bundles we use the Chern characters and conclude that I(ξ) = 0
whenever ξ is trivial and H2(B,ZZ) is torsion-free.

Now we give an example of a real vector bundle ξ with non-trivial isotropy
(that is to say, I(ξ) 6= 0). Suppose that n = 2m with m ≥ 1; construct the
vector bundle over IRP n

ξ = mγn
1 ⊕m

(here mγn
1 stands for the Whitney sum of γn

1 with itself m-times and the
second factor m stands for the trivial m-dimensional bundle over IRP n). The
dimension of ξ is n and it is immediate to see that

ξ ⊗ γn
1
∼= ξ .

4.2.1 Isotropy and stable equivalence

Our first objective is to prove that if an n-real vector bundle over a CW-
complex with only one top cell (for example, a projective space) has non-
trivial isotropy, then any n-bundle in its stable class also has non-trivial
isotropy. Let us recall that two real vector bundles ξ and ξ′ are stably equiv-
alent (and we write ξ ∼S ξ

′ ) if there exist trivial vector bundles, say m and
n such that ξ ⊕m and ξ′ ⊕ n are equivalent.2

In order to prove what we just anounced we must make use of the concept
of cooperation of a COH-space on a based space due to B. Eckmann and P.
J. Hilton (see [16]), which we briefly review here for the reader’s benefit. Let

2As we did with equivalence classes of bundles, we do not differentiate notationaly a
vector bundle and its stable class.
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A be a COH-space with comultiplication ν : A - A ∨ A; we say that A
cooperates on a based space X if there exists a map p : X - A ∨X such
that

1. if q : A ∨ X - X is the projection, then qp and 1X are based-
homotopic;

2. (1A ∨ p)p and (ν ∨ 1X)p are based-homotopic.

CW-complexes with just one top cell are a natural source of examples of
cooperation of a sphere on a space. In fact, suppose that X = Y tφ D

n is
defined by attaching the n-disk Dn to the CW-complex Y (note that dimY <
n) via the map φ : Sn−1 - Y . The canonical map p : X - Sn ∨ X
obtained by pinching the cone CSn−1 ∼= Dn half-way through its height is a
cooperation.

Notice that X = Y tφD
n is homeomorphic to the mapping cone Cφ; now

take the long sequence of spaces determined by φ

Sn−1
φ

- Y
ı̄ - Cφ

cyo
-

cyo
-
∑

Sn−1

∑
φ

-
∑

Y - . . . (4.10)

where cyo is induced by the constant map onto the base point yo ∈ Y . Let Z
be an arbitrary based space and construct the long exact sequence of based
spaces and groups associated to the sequence 4.10 (see [35, Theorem 3.2.1]):

. . . - [ΣY, Z]∗
Σφ∗

- [Sn, Z]∗
cy0∗-

[X,Z]∗
ı̄∗- [Y, Z]∗

φ∗
- [Sn−1, Z]∗ . (4.11)

Before proceeding further, we introduce some notation. Firstly, we indicate
the free homotopy class of a map, say f : X - Z, simply by its represen-
tative f ; secondly, if in the previous example the spaces X,Z and the map
f are based, we indicate the based homotopy class of f by f∗.

Take arbitrarily f∗ ∈ [X,Z]∗ and α ∈ πn(Z, z0) and define fα
∗ ∈ [X,Z]∗

to be the based homotopy class of the composite map

X
p

- Sn ∨X
α∨f

- Z ∨ Z ν - Z,
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where ν is the folding map. We now state the key result that makes possible
the result on isotropy and stability we have anounced at the end of the
previous section (for its proof, see [16, Corollary 15.5]):

Theorem 4.2.2 Let f∗, g∗ ∈ [X,Z]∗ be given. Then,

ı̄∗(f∗) = ı̄∗(g∗) ⇐⇒ (∃α ∈ πn(Z, zo)) g∗ = fα
∗ .

We wish to extend this theorem to sets of free homotopy classes of maps
with Z = BO(n). To this end, we recall another well-known result of Ho-
motopy Theory: since the base point yo ∈ Y ⊂ X is non degenerate (we
assume implicitly that we work with well pointed based spaces) and BO(n) is
path-connected, there exists an action of π1(BO(n), wo) on [X,BO(n)]∗ and

[X,BOn ]∗/π1(BO(n), wo) ∼= [X,BOn ]

(see [35, Corollary 7.1.13]). Notice that because π1(BO(n), wo) ∼= ZZ2 =
{−1, 1} this action becomes particularly simple; we indicate it by writing, for
every f∗ ∈ [X,BOn ]∗, −1.f∗ = −f∗. An analysis of the proof of [35, Corollary
7.1.13] shows that the function

[X,BOn ]∗
ı̄∗- [Y,BOn ]∗

is π1(BO(n))-equivariant, that is to say, ı̄∗(±f∗) = ∗ ± ı̄∗(f∗), for every f∗ ∈
[X,BOn ]∗.

With this we can extend Theorem 4.2.2 to the free case: Suppose that
f, g ∈ [X,BOn ] are such that

ı̄∗(f) = ı̄∗(g) . (4.12)

Because BO(n) is path connected and the base point yo ∈ X is non degenerate,
within the free homotopy classes f and g there are based representatives of
f and g, respectively; thus, without loss of generality, we may assume that
the maps f, g : X - BO(n) are based, that is to say, f(yo) = g(yo) = wo.
In view of the format of the orbits of [X,BOn ]∗/ZZ2, equality 4.12 means that
either ı̄∗(f∗) = ı̄∗(g∗) (in such case g∗ = fα

∗ ) or ı̄∗(f∗) = ı̄∗(−g∗) (in such case
−g∗ = fα

∗ ), for some α ∈ πn(Z, zo)); hence, g = fα. The converse also holds
true, showing that Theorem 4.2.2 can indeed be extended to the free case if
Z = BO(n).

Now we can prove the following result.
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Theorem 4.2.3 Let ξ and η be two stably equivalent real n-dimensional bun-
dles on a connected CW-complex with only one top cell X, and suppose that
ξ⊗λ ∼= ξ for some line bundle λ. Then, η⊗λ ∼= η. In particular, the isotropy
groups of ξ and η coincide.

Proof – For the proof the reader is referred to the next diagram

X

?

p

Sn ∨X

	�
�

�

1×∆ �
�

� @
@

@ ∆
@

@
@R

(Sn ∨X)× (Sn ∨X) Sn ∨ (X ×X)

(α ∨ f)× (c0 ∨ l)

? ?

α ∨ (f × l)

(BOn ∨BOn)× (BO1 ∨BO1) Bn ∨ (BOn ×BO1)

ν × ν

? ?

1 ∨ ψ

BOn ×BO1 BOn ∨BOn

@
@

@

ψ @
@

@R 	�
�

� ν
�

�
�

BOn

Assume that X = Y tφ D
n; moreover, suppose that ξ, η and λ are classified

by f : X - BO(n), g : X - BO(n) and ` : X - BO(1), respectively.
Since ξ and η are stably equivalent and dimY < n, the restrictions to ξ|Y
and η|Y are equivalent (see [19, Chapter 9, Theorem 1.5]); hence, according
to the free version of Theorem 4.2.2, there exists α ∈ πn(BO(n), wo) such that
g = fα; if we indicate by ξα the bundle classified by fα, we can write that
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η = ξα. With this notation in mind, we observe that the bundle (ξ ⊗ λ)α is
classified by the map

X
p

- Sn ∨X α∨h- BOn ∨BOn

ν - BOn

where h := ψ(f × `)∆ and ψ is the action of BO(1) on BO(n) (see Theorem
A.6.6); moreover, the bundle ξα ⊗ λ is classified by the map ψ(fα × `)∆.

It is now a straightforward matter to prove that the diagram at the be-
ginning of the proof is commutative. This means that (ξ⊗λ)α ∼= ξα⊗λ and
therefore,

η ⊗ λ ∼= ξα ⊗ λ ∼= (ξ ⊗ λ)α ∼= ξα ∼= η .

Hence,
λ ∈ I(ξ) ⇐⇒ λ ∈ I(η) .

2

Remark 4.2.4 The condition that the two vector bundles ξ and η of the
statement must have the same dimension is essential: indeed, for n = 2m,
ξ = mγn

1 ⊕ m and η = mγn
1 are stably equivalent with ξ ⊗ γn

1
∼= ξ and

η ⊗ γn
1
∼= m.

4.2.2 Vector bundles on real projective spaces

In this section we will study the isotropy group of a real even-dimensional
vector bundle over a real projective space IRP n. Since line bundles over IRP n

are classified by H1(IRP n,ZZ2) ∼= ZZ2, these isotropy groups are subgroups of
ZZ2; one is then tempted to believe that such an analysis is relatively simple
but, as we shall see, this is not so!

We begin by reviewing some basic acts about topological K-theory. The
reader can find all the necessary definitions in [19] or [22]; here we only recall
the following.

Let V(B) be the set of all equivalence classes of real vector bundles over
a finite CW-complex B; the Whitney sum and tensor product of vector bun-
dles give to this set the structure of a semi-ring; the (Grothendieck) ring
KO(B) obtained by symmetrization of V(B) is the so-called real K-ring of
B. If B is based, say with base point bo, define K̃O(B) as the kernel of the
homomorphism

ι! : KO(B) - KO({bo}) ∼= ZZ
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induced by the inclusion map ι : {bo} - B.
The collapsing map B - {bo} shows that

KO(B) ∼= K̃O(B)⊕ ZZ .

It is well-known that there exists a surjection

α : V(B) - K̃O(B) , ξ - ξ − dimξ

and
ξ ∼S η ⇐⇒ α(ξ) = α(η)

(that is to say, the stable equivalence classes of real vector bundles over B
can be identified with the elements of K̃O(B) – see [19, Chapter 9, Theorem
3.8]).

At this point we can describe the reduced KO-ring of a real projective
space (see [22, Chapter 4, Proposition 3.12] or [19, Chapter 16, Proposition
12.5]).

Theorem 4.2.5 The ring K̃O(IRP n) is generated by the element x = γn
1 −1

subject to the relations

x2 + 2x = 0 and xf(n)+1 = 0

where f(n) is the number of integers q with q = 0, 1, 2, 4 (mod. 8) and
0 < q ≤ n. In particular, the group K̃O(IRP n) is cyclic of order 2f(n).

This theorem shows in particular, that if ξ is an r-dimensional real vector
bundle over IRP n, there exists an integer s, 0 ≤ s < 2f(n), such that

ξ = sγn
1 + r − s .

Furthermore, it also shows that the isotropy groups of the trivial vector
bundle of dimension 2f(n) over IRP n is not trivial: it contains γn

1 !

Remark 4.2.6 The integer valued function f(n) is given by f(n + 8) =
f(n) + 4 and in particular, f(8q) = 4q. The following table will be useful
later on:

n 1 2 3 4 5 6 7 8
f(n) 1 2 2 3 3 3 3 4
2f(n) 2 4 4 8 8 8 8 16

(4.13)

(see [22, Chapter 3, Remark 3.13]).
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After this hiatus we resume the normal course of our discourse with the
following result.

Theorem 4.2.7 Let ξ be a real r-dimensional bundle over IRP n (with r
even3) which is stably equivalent to sγn

1 with 0 ≤ s < 2f(n). Then

ξ ∼S ξ ⊗ γn
1 ⇐⇒ either s =

1

2
r or s =

1

2
(r + 2f(n)) .

Proof – Because of Theorem 4.2.5

ξ ⊕ 2f(n) = sγn
1 ⊕ 2f(n) + r − s

and so,
ξ ⊗ γn

1 ⊕ 2f(n) = γn
1 ⊗ (ξ ⊕ 2f(n)) =

= γn
1 ⊗ (sγn

1 ⊕ (2f(n) + r − s)) = s⊕ (2f(n) + r − s)γn
1 .

Therefore,

ξ ⊕ 2f(n) = (ξ ⊗ γn
1 )⊕ 2f(n) ⇐⇒ s ≡ 2f(n) + r − s (mod 2f(n)) .

2

We now recall that if B is a CW-complex with dim B = n < ∞, and ξ
and η are two real r-bundles over B with r ≥ n+ 1, then

ξ ∼S η ⇐⇒ ξ ∼ η

(see [19, Ch.9, Theorem 1.5]). This fact and the previous Theorem have an
immediate consequence:

Corollary 4.2.8 Let ξ be a real r-dimensional bundle over IRP n (with r
even) such that ξ ∼S sγ

n
1 , for 0 ≤ s < 2f(n). Then

ξ ∼ ξ ⊗ γn
1 ⇐⇒ either s =

1

2
r or s =

1

2
(r + 2f(n)) .

If the dimension of ξ is less or equal to n we have a weaker result:

Corollary 4.2.9 Let ξ be a real r-dimensional bundle over IRP n, with r ≤ n
even; suppose that ξ⊗γn

1
∼= ξ. Then, either ξ ∼S

1
2
nγn

1 or ξ ∼S
1
2
(n+2f(n))γn

1 .

3See Theorem 4.2.1.
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The previous Theorem and its corollaries are significant steps towards the
proof of the following interesting and highly non-trivial result:

Theorem 4.2.10 Let ξ be a real vector bundle of dimension n over IRP n,
with n even. Then

I(ξ) ∼=
{

ZZ2
∼= {1, γn

1 } ⇐⇒ ξ ∼= 1
2
nγn

1 or ξ ∼= 1
2
(n+ 2f(n))γn

1 ,
0 otherwise .

Proof – We are going to give a proof of the “easy cases” of this theorem and
we will sketch the argument for the remaining “hard case”; indeed, this part
of the proof transcends the scope of these notes, and so the reader is referred
to [11, Theorem 1.1].

Suppose that for s = 1
2
n or s = 1

2
(n + 2f(n)), we can show that there

exists a real n-bundle ξ over IRP n which is stably equivalent to sγn
1 and is

such that ξ ⊗ γn
1
∼= ξ. Then by Theorem 4.2.3 the same will hold true for

any n-bundle stably equivalent to ξ, thus proving the Theorem. As we have
already noted, the existence of such an n-bundle ξ is clear for s = 1

2
n: just

take ξ = 1
2
nγn

1 ⊕ 1
2
n.

The problem is to establish the existence of such a vector bundle whenever
s = 1

2
(n+2f(n)). The cases n = 2 and n = 6 are easy to deal with. In fact, on

the one hand we note that in both cases s = 1
2
(n+ 2f(n)) = n+ 1 (refer back

to Table 4.13); on the other hand, we recall that for every positive integer n

τ(IRP n) ∼S (n+ 1)γn
1

(see [19, page 17]). We must show that τ(IRP n) ⊗ γn
1
∼= τ(IRP n). This fact

can be established using the results of Section 1.3.3; see in particular the
example at the end of that Section. We recall that τ(IRP n) is equivalent to
the vector bundle obtained as the quotient of the (ZZ2, GL(n, IR))-equivariant
bundle τ(Sn) by the action (φ1, φ) and that τ(IRP n) ⊗ γn

1 is the quotient
bundle of τ(Sn) by the action (φ2, φ). Now, for n = 2, 6 there exists a fibre
preserving equivariant map f : TSn - TSn given by f(b, ~v) = (b, b × ~v)
where b × ~v is either the usual cross-product in IR3 or the Cayley-product
in IR7. This map induces the equivalence τ(IRP n) ⊗ γn

1
∼= τ(IRP n) we are

seeking.4

4This is similar to the fact that the only almost complex spheres are precisely S2 and
S7 (see [22, Chapter 3]).
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To handle the general case, we must introduce a usefull tool, namely
twisted complex structures. A twisted complex structure on a real vector
bundle ξ over a space B is like a complex structure, except that the pure
imaginary scalars live in a real euclidean line bundle λ over B, instead of
in a constant “imaginary axis iIR”. Thus in place of IC we define ICλ to be
the bundle of fields with underlying real bundle 1 ⊕ λ and whose fibrewise
multiplication is determined by setting v2 = −1 for any v in λ with ||v|| = 1.
Like ordinary complex structures, and like the analogous twisted symplec-
tic structures in [5], twisted complex structures have a useful desuspension
property (see Proposition 4.2.11 below).

Although a complex structure on ξ involves a scalar action of IC on the
fibres of ξ, the usual definition of complex structure concentrates on the ac-
tion of the pure imaginary scalars: we define a complex structure on ξ to be a
fibrewise linear map J : ξ - ξ such that J2 = −1. The analogous defini-
tion of twisted complex structures shows immediately why we are interested
in them here. Let ξ be a real vector bundle, λ a real euclidean line bundle
over the same base, and let ξb , λb denote the fibres over a point b ∈ B.
Then we introduce the following definition. A λ-twisted complex structure
on ξ is a fibrewise linear map J : λ ⊗ ξ - ξ such that J2 = −1; more
precisely, for every b ∈ B, u ∈ ξb, and v ∈ λb such that ||v|| = 1, we require
that J(v ⊗ J(v ⊗ u)) = −u.

Thus if ξ has a λ-twisted complex structure, then λ⊗ξ and ξ are equivalent
in a special way.

When λ is trivial a λ-twisted complex structure on ξ is just a complex
structure on ξ. Since any line bundle λ is locally trivial, locally a twisted
complex structure is the same as a complex structure.

Given a λ-twisted complex structure J on ξ, we get a corresponding
fibrewise scalar action of ICλ on ξ, and in particular this gives each fibre of ξ
a complex structure. For if we choose a unit vector v in λb, we may denote a
point in (1⊕ λ)b by x⊕ yv where x , y ∈ IR, and define the scalar action by

(x⊕ yv) · u = xu+ yJ(v ⊗ u) .

This is well-defined since if we use −v in place of v the recipe gives

(x⊕ (−y)(−v)) · u = xu+ (−y)J((−v)⊗ u) = xu+ J(v ⊗ u) .

We call this scalar action a ICλ-structure and ξ equipped with a ICλ-structure
is called a ICλ-bundle.
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The simplest case is 1⊕ λ, which admits a natural ICλ-structure.
As a second example, reconsider the situation of the tangent bundle de-

scribed in Section 1.3.3. If n = 2 (resp. 6), a well defined ICγn
1
-structure

J : τ(IRP n)⊗ γn
1

- τ(IRP n)

is given on τ(IRP n) by the vector product (resp. Cayley number product)

J(b, ~v) = (b, b× ~v) .

Notice that J2 = −1, as expected.
The Whitney sum of ICλ-bundles for a fixed λ is again a ICλ-bundle; over a

finite-dimensional base space we can “stabilise” ICλ-bundles by adding multi-
ples of ICλ, in the same sense that complex bundles are stabilised by adding
multiples of the trivial bundle IC. In particular the following “twisted desus-
pension” theorem holds true.

Proposition 4.2.11 Let λ be a real line bundle over a 2m-dimensional CW -
complex B, and let ζ be a ICλ-bundle of complex dimension m + N over B,
with N ≥ 0. Then there is a (unique) ICλ-bundle η of complex dimension m
over B such that ζ and η ⊕N ICλ are isomorphic as ICλ-bundles.

Notice that, as in the ordinary case, λ-twisted complex structures are
related to non-degenerate skew-symmetric fibrewise maps ξ ⊗ ξ - λ (we
may pass from one to the other by making a choice of euclidean metric on
ξ). This shows up the similarity with the twisted symplectic structures in
[5].

The next result establishes a connection between the existence of ICγn
1

structures for bundles over the real projective spaces and equivariant bundle
theory.

Proposition 4.2.12 Let ξ be a (ZZ2, Gl(n, IR))-bundle over Sn with the ac-
tions (φ1, φ) and (φ2, φ) as at the end of Section 1.3.3. Let us assume that
there exists an equivariant bundle autoequivalence f of ξ. Then, if f is an
involution, that is to say, f 2 = −1, the corresponding quotient bundles have
the ICγn

1
-structure J = f̂ .

Now let us go back to the theorem. We first deal with the case n = 2, 4
or 6 mod 8.
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Suppose we can show that the trivial bundle 2f(n) over IRP n admits a
ICγn

1
-structure. By Proposition 4.2.11 then 2f(n) is isomorphic as a ICγn

1
-bundle

to η⊕ 1
2
(2f(n)−n) for some ICγn

1
-bundle η of complex dimension 1

2
n. Let ξ be

the real n-plane bundle underlying η. Then

ξ ⊕ 1

2
(2f(n) − n)γn

1 ⊕
1

2
(2f(n) − n) ∼= 2f(n),

and since ξ ⊕ 2f(n) ∼= sγn
1 ⊕ (n − s + 2f(n)) for some s, an easy calculation

shows that ξ is stably equivalent to 1
2
(n+ 2f(n))γn

1 . Furthermore, ξ ⊗ γn
1
∼= ξ

since ξ admits a ICγn
1
-structure.

We aim to show that for n = 2, 4 or 6 mod 8, the trivial bundle 2f(n)

admits a ICγn
1
-structure. At this point we could simply quote from Proposition

(7.1) of [2]. However, we shall give a self-contained argument using Clifford
algebra bundles and modules, and equivariant theory.

We refer to [4] as a good reference for Clifford algebras and modules, and
will use their notation here.

First, recall that 2f(n) = dn, the dimension of the irreducible real module

for the Clifford algebra Cln = Cl(IRn); therefore, IR2f(n)

is a real module for
Cln. Now, if n = 2 mod 4 (i.e. n = 2, 6 mod 8), the volume element ω
in Cln+1 has positive square, ω2 = 1, and is central in Cln+1; moreover, as
n + 1 is odd, ωb belongs to the even subalgebra Cl0n+1

∼= Cln, and hence

acts on the module IR2f(n)

. This means that on the trivial bundle (Sn ×
IR2f(n)

, pr1, S
n, IR2f(n)

, GL(n, IR)), we can define the map f(b, ~v) = (b, ωb · ~v),
where b is immersed as an odd element of Cln+1, and the · means the Clifford

multiplication. This is an automap of Sn × IR2f(n)

, that is linear on the fibre
and equivariant as f(−b,−~v) = (−b, ωb · ~v); furthermore, it is an involution,
since

f(f(b, ~v)) = (b, ωbωb · ~v) = (b, ω2b2 · ~v) = (b,−~v) .
Now, this does not work for n = 0 mod 4, when ω2 = −1; anyway, we

can solve the case n = 4 mod 8 by a similar argument, observing that, for
these values of n, we have 2f(n) = 2f(n+1). Actually, this is always true for
n = 2, 4, 6 mod 8, and therefore, the following is a unified proof for all these
cases.

Simply observe that for these values of n, IR2f(n)

= IRf(n+1), and since the
second is a module for Cln+1, every b ∈ IRn+1 acts by Clifford multiplication

on IR2f(n)

as desired. Then, define the automap f(b, ~v) = (b, b · ~v) of IRP n ×
IR2f(n)

, where again b is view as an element of Cln+1.
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The argument just described can not be generalized to the values of n
that are divisible by 8. This follows from the computation of the twisted
K-groups performed in Section 7 and 8 of [11] for the projective spaces.
On the other hand, one can give a direct proof that holds true in general
for n divisible by 4. As stated before, this requires sophisticated tools, and
therefore here we give just a sketch of the argument.

Let n = 4k for some integer k, and for any non-negative integers r, s with
r+s ≥ 2k, consider the vector bundle ζ = 2r⊕2sγn

1 over IRP 4k. Then ζ is the
real bundle underlying the complex bundle r ⊕ sγn

1 . The latter desuspends
uniquely to a complex bundle η of complex dimension 2k, that is to say,

η ⊕ (r + s− 2k) ∼= r ⊕ sγn
1 .

Now, since 2f(4k) = 22k+e, where e = 0, 1 for even, odd k, if we specialize to
the case s = k + 22k−2+e, r = 0, we get, for the real bundle ξ underlying η

ξ ⊕ 1

2
(2f(n) − n) ∼=

1

2
(2f(n) + n)γn

1 ,

that is, ξ is stably equivalent to 1
2
(2f(n) + n)γn

1 as desired.

Observe that η and η⊗γn
1 are stably equivalent and for an odd k they are

actually equivalent. This gives at once an easy proof for the case n = 4 mod 8.

Now, the real problem is to prove that ξ and ξ ⊗ γn
1 are equivalent for

any k. The proof is based on a desuspension argument for Spinc structures,
similar to the one described before for ICλ-bundles.

The idea is that if two bundles are stably equivalent and admit a Spinc

structure, and if the stable equivalence preserves in some sense the Spinc

structure, then the obstruction to desuspend the equivalence lies in the ZZ2-
equivariant K theory of the base space. The precise statement (whose proof
can be found in [11]) is the following.

Proposition 4.2.13 Let X be a connected closed manifold of even dimen-
sion 2m, with non trivial first Stiefel-Withney class w1(X) and such that
w2(X) is the reduction of an integral class in H2(X,ZZ). Let ξ and ξ′ be
two 2m-dimensional Spinc bundles over X, and suppose that there exists
a stable equivalence ξ ∼f ξ′ under which the Spinc structures correspond.
Then, f desuspends to an equivalence ξ ∼= ξ′ ⇐⇒ the Euler classes of the
ZZ2-equivariant bundles associated to ξ and ξ′ are equal in K0

ZZ2
(X).
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Now, the complex structures on η and η ⊗ γn
1 , define the desired Spinc

structure on ξ and ξ⊗γn
1 . Since ξ and ξ⊗γn

1 are stably equivalent, it follows
that (with the orientation given by their Spinc structures) they are stably
oriented equivalent. Moreover, by Corollary 9.3 of [11], there exists a stably
oriented equivalence between them that preserves their Spinc structures.

There remains to prove the equality of Euler classes; this is more tech-
nical, and must be done by explicit computation. The desired results are in
Lemma 10.6 of [11]. 2



Chapter 5

Homotopy and fundamental
equivalence

5.1 Introductory material

In Chapter 3 we introduced the concept of fundamental equivalence between
two principal G-bundles ξ and ξ′ over a space B; we arrived at this no-
tion through three different routes, namely by comparing: (i) the funda-
mental bundles associated to ξ and ξ′, (ii) the gauge groups of ξ and ξ′

as subgroups of a common local group, and (iii) the transition functions of
ξ and ξ. In Chapter 4 we tried to gain some insight about fundamental
equivalence between smooth vector bundles; we discovered that if we select
and fix a good cover for B, say U = {Ui|i ∈ J}, then there is a bijection
between the set of all classes of fundamentally equivalent principal O(n)-
bundles (resp. U(n)-bundles) over B and the set of all conjugacy classes of
all the gauge groups of such bundles (viewed as subgroups of the local gauge
group L =

∏
i∈J Map(Ui, G)). In neither of these two chapters we made a

systematic use of the homotopy classification of bundles; we do this in the
present chapter.

In order to develop this chapter we need to recall some properties of
classifying spaces; the proof of these properties can be found in Appendix
A. We first recall that the construction of classifying spaces is functorial;
furthermore, we need the following properties: (i) the classifying space BG

of a topological group G is the base space of a principal G-bundle ξG =
(EG, pG, BG, G) with contractible total space EG; (ii) because the centre ZG
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of the group G is abelian, the classifying space BZG is a topological abelian
group with multiplication ψ (Proposition A.5.2); (iii) the free action r of ZG
on G obtained by restricting the multiplication of G defines a free action

B(r) : BG ×BZG
- BG .

(see Theorems A.6.6 and A.6.7). Finally, we make the following observation.
Let I(G) = G/ZG be the group of inner automorphisms of G. If we apply
the functor

B : TopGr - Top , G - BG

to the central sequence

0 - ZG
i - G

π - I(G) - 0

we obtain the exact sequence of based spaces and maps (Theorem A.6.1)

0 - BZG

Bi - BG

Bπ - BI(G)
- 0. (5.1)

Remark 5.1.1 For technical reasons we now assume that the generic struc-
tural group G of all bundles considered in this chapter are compact; we
also observe that since our version of the Milgram-Steenrod construction of
classifying spaces is done within the framework of weak-Hausdorff k-spaces,
the group G is automatically Hausdorff, because all k-spaces are T1. We also
assume that the identity element uG of G is non-degenerate. Last, but not
least, we suppose that the pair (G,ZG) is a ZG-equivariant closed cofibra-
tion.

The exact sequence 5.1 yields an exact sequence of sets or groups of
homotopy classes of maps as follows. Because of the assumptions made in
Remark 5.1.1, the 4-tuple

(BG, Bπ, BI(G), BZG)

is a principal BZG-bundle by Theorem A.7.2; moreover, because of Remark
A.7.3, the map Bπ : BG

- BI(G) is a Hurewicz fibration with fibre BZG.
This fibration yields, for every based space Y , an exact sequence of based
sets and groups

. . . - [B,ΩBZG]∗
ΩBi∗- [B,ΩBG]∗

ΩBπ∗- [B,ΩBI(G)]∗
j∗

-
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j∗
- [B,BZG]∗

Bi∗- [B,BG]∗
Bπ∗- [B,BI(G)]∗

(5.2)

(see [35, Theorem 3.1.4]). Note that if B is a non-based space and Y =
Bt{∗} is the disjoint union of B and a singleton space {∗}, then [Y, − ]∗ =
[B, − ]. With this stratagem we obtain the free version of the exact sequence
5.2:

. . . - [B,ΩBZG]
ΩBi∗- [B,ΩBG]

ΩBπ∗- [B,ΩBI(G)]
j∗

-

j∗
- [B,BZG]

Bi∗- [B,BG]
Bπ∗- [B,BI(G)]

(5.3)

5.2 Conjugacy classes of gauge groups

Let B be a space with a fixed good cover U = {Ui|i ∈ J}; according to
Lemma 3.1.7, every principal G-bundle over B is locally trivial over U and
hence, we can subdivide the set of gauge groups of all principal G-bundles
over B into conjugacy classes CG(ξ), where G(ξ) is the gauge group of the
principal G-bundle ξ = (E, p,B,G); we denote by C(B,G) the set of all these
conjugacy classes.

Let us assume that ξ is classified by a map f : B - BG and satisfies
conditions [C1] and [C2] introduced in Sections 2.1 and 3.1 respectively, but
which we reproduce here for the reader’s benefit:
[C1] (∀bo ∈ B) η : G(ξ) - G , f 7→ f |p−1(bo)(uG) is a surjection ;
[C2] (∀i ∈ J)(∀h̄ii : Ui

- I(G))(∃hi : Ui
- G) h̄i = πhi ;

then, the following theorem is an immediate consequence of Theorem 3.1.4:

Theorem 5.2.1 The function

Ξ : C(B,G) - [B,BI(G)]

CG(ξ) - [Bπf ]

is injective.

The next result (which also follows from Theorem 3.1.4) is more interest-
ing:
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Theorem 5.2.2 Suppose that ξ is classified by a map f : B - BG and
satisfies conditions [C1] and [C2]; moreover, assume that one of the following
hipotheses holds true:

1. the set [B,BI(G)] has only one element;

2. ZG is trivial ;

3. the sequence of topological groups

0 - ZG
i - G

π - I(G) - 0

splits ;

4. B is the (reduced) suspension of a simply connected space X and ZG
is discrete.

Then , Ξ : C(B,G) - [B,BI(G)] is bijective.

Proof – The stated conclusion is an immediate consequence of either hy-
potheses 1. or 2.

Assume 3. to be valid: a section σ : I(G) - G produces a map Bσ

such that BπBσ = 1BI(G)
.

Now suppose that 4. is true. Since ZG is a discrete subgroup of G,
the projection map π : G - I(G) is a covering projection; hence, every
map from a simply connected space X into I(G) can be lifted to G over π.
This means that π∗ : [X,G] - [X, I(G)] is surjective. Now consider the
following commutative diagram:

[
∑

X,BG]
Bπ∗- [

∑
X,BI(G)]

? ?

[X,ΩBG]
ΩBπ∗- [X,ΩBI(G)]

? ?

[X,G]
π∗

- [X, I(G)]
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where the two upper vertical maps are given by adjointness (so they are
bijective) and the other two vertical maps are induced by the homotopy
equivalences ΩBG

∼= G and ΩBI(G)
∼= I(G). This diagram shows that Bπ∗ is

surjective, that is to say, every map
∑
X - BI(G) has a lift over Bπ. 2

The last consequence of Theorem 3.1.4 which we wish to state as a theo-
rem is the following:

Theorem 5.2.3 Let B =
∑
X satisfying condition [C2] and suppose that G

is path-connected. Also, let τ be the trivial principal G-bundle over B. Then
the gauge groups G(ξ) and G(τ) are conjugate ⇐⇒ ξ admits a reduction of
its strucure group G to ZG.

Proof – Consider the tail end of the exact sequence 5.3

[B,BZG]
Bi∗- [B,BG]

Bπ∗- [B,BI(G)]

and notice that because B is an associative COH-space, this is an exact
sequence of groups (see [35, Theorem 1.2.8]). The result now follows from
Theorem 3.1.4 and [19, Chapter 6, Theorem 5.1]. 2

We give now some examples. Suppose that B = S4 and G = SU(2) ∼= S3.
Since ZSU(2) ∼= ZZ2 is discrete, we conclude from Theorem 5.2.2 that

C(S4, SU(2)) ∼= [S4, BI(SU(2))] ∼= π3(IRP
3) ∼= ZZ .

Hence, there are infinitely many conjugacy classes of gauge groups of princi-
pal SU(2) bundles over S4. It is worth noticing that because

ESU(2)(S
4) ∼= [S4, BSU(2)] ∼= ZZ

we can say that if ξ and ξ′ are two principal SU(2)-bundles over S4 then

ξ ∼= ξ′ ⇐⇒ G(ξ) ∼C G(ξ′) .

The reader should recall that in general, equivalence of principal bundles
is not equivalent to neither isomorphism or conjugacy of the corresponding
gauge groups (see the example given in section 3.2).
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In the next example we take B = S2 and G = SU(2)× S1. Because the
homomorphism

Bπ∗ : [S2, BG] ∼= ZZ - [S2, BI(G)] ∼= ZZ2

is trivial, the set C(S2, SU(2) × S2) has only one element and hence, by
Theorem 5.2.3, any principal SU(2) × S1-bundle ξ over S2 has a reduction
to Z(SU(2)× S1) ∼= ZZ2 × S1. In particular, G(ξ) ∼= Map(S2, SU(2)× S1).

5.3 Fundamental action and classifying spaces

The observations made before imply that, for every space B, the based set
[B,BZG] is an abelian group with multiplication

ψ∗ : [B,BZG]× [B,BZG] - [B,BZG] , ([`1], [`2]) - [ψ(`1 × `2)∆]

(where ∆ is the diagonal map). In what follows we shall indicate the homo-
topy classes by any of their representatives and hence, the multiplication ψ∗
will be written simply as

ψ∗(`1, `2) = ψ(`1 × `2)∆ .

It is easy to see that the there is an action B(r)∗ of the group [B,BZG] on
the set [B,BG] given by

B(r)∗(f, `) = B(r)(f × `)∆ .

In the sequel this action will be known as the fundamental action (of the
group [B,BZG] on [B,BG]).

The next proposition shows that B(r)∗ is actually the action introduced
in Lemma 3.1.3; a preparatory lemma is necessary.

Lemma 5.3.1 Let ξ = (E, p,B,G) and ξ′ = (E ′, p′, B′, G′) be principal bun-
dles; let µ : G - G′ be a group homomorphism and let Eµ : E - E ′ be
a µ-equivariant map. Then, there exists a common local trivialization of the
two bundles such that their transition functions are related by the formula
µgij = g′ijBµ, where Bµ is the map induced by Eµ at the base space level.
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Proof – Let {U ′
i , φ

′
i} be a local trivialization for p′. Then {B−1

µ (U ′
i)} is

an open covering of B over which we can obtain (by refinement) an open
trivialization {Ui, φi} of p. The following commutative diagram

p−1(Ui)
Eµ

- p′−1(U ′
i)

6 6

φi φ′i

Ui ×G
Bµ × µ

- U ′
i ×G′

can now be used to define a new family of local homeomorphisms {ψ′i} for
p′: in fact, Eµφi(x, uG) and φ′i(Bµ(x), u′G) belong to the same fibre and
hence define an element ĝ′ in G′ giving rise to the desired trivialization
ψ′i(x, g

′) := φ′i(x, g
′ĝ′). The definition of the transition functions via the

local homeomorphisms {φi} and {ψ′i} completes the proof. 2

Proposition 5.3.2 Two principal G-bundles ξ and ξ′ over B classified by
maps f, f ′ : B - BG are fundamentally equivalent ⇐⇒ f ′ = B(r)∗(f, `)
for some ` in [B,BZG].

Proof – We indicate the set of transition functions of a generic principal
G-bundle ξ by {gξ

ij}. With this notation in mind, if f ′ = B(r)∗(f, `), then

gξ′

ij = gξG
ij B(r)(f × `)∆.

Now apply Lemma 5.3.1 to the following diagram

G× ZG
r - G

iG × iZG

? ?

iG

EG × EZG

E(r)
- EG

pG × pZG

? ?

pG

BG ×BZG

B(r)

- BG
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to obtain the equality

gξ′

ij = s(gξG
ij f × gξZG

ij `)∆ = gξ
ijcij

where the maps cij = gξZG
ij ` take values in ZG; we conclude the proof using

Theorem 3.1.4. 2

Corollary 5.3.3 Let ξ be a numerable principal G-bundles over a space B,
and λ be a numerable principal ZG-bundle over the same space. Suppose
that these bundles are classifyed by the maps f and l, respectively; then the
bundle ξ � λ is classifyed by the map B(r)∗(f, `).

5.4 An exact sequence

It is well-known that if p : E - B is a Hurewicz fibration with fibre F
and E contractible, then F and ΩB have the same homotopy type; for the
reader’s benefit and in order to give detailed proofs of the statements we are
going to make later on, we now explain how we arrive at such a homotopy
eqivalence.

Consider the diagram

ΩB
j

- Lp

p̄
- PB

�
�

�

h �
�

��

ε̄1

? ?

ε1

F
i

- E
p

- B

where the square is a pullback, PB is the space of all paths originating
at the base point xo ∈ B, j is the fibre inclusion, and h(x) = (x, cx0) is
a homotopy equivalence whose homotopy inverse is constructed as follows.
Take the homotopy

H : Lp × I - B , ((x, α), t) 7→ α(1− t)

and lift it to a homotopy H̃ : Lp× I - E. The map s = H̃( − , 1) takes
values in the fibre F and one can prove that sh and hs are homotopic to the
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appropriate identity maps (see [35, Lemma 3.1.3] for details). Now suppose
that E is contractible, and take a based contraction K : E × I - E to
the base point xo ∈ E (we assume that xo is non-degenerate). Then ΩB
is a weak deformation retract of Lp: in fact, the homotopy K ′((x, α), t) =
(K(x, 1−t

1+t
), βt) of Lp, where

βt(s) =

 α
(

2s
1+t

)
0 ≤ s ≤ 1+t

2

pK
(
x, 2s−1−t

1+t

)
1+t
2
≤ s ≤ 1,

yields a retraction ρ((x, α)) = K ′((x, α), 0); finally, we observe that δ = sj :
ΩB - F is a homotopy equivalence with homotopy inverse ρh.

In the present context, there is a further point which deserves our atten-
tion. Suppose that F is an H-space with a multiplication ν : F ×F - F
which has a strict identity. Moreover, assume that there is an action ψ :
F × E - E such that the following diagram commutes:

F × F
ν - F

? ?

F × E
ψ

- E

pr2

? ?

p

E
p

- B

Then, under these conditions, the map δ : ΩB - F is an H-map (see [6,
Lemma 3.2]).1

Because Bπ : BG
- BI(G) and pI(G) : EI(G)

- BI(G) are Hurewicz
fibrations with fibres BZG and I(G), respectively, we have the following H-
space preserving homotopy equivalences:

δ : ΩBI(G)
- BZG , δI(G) : ΩBI(G)

- I(G) .

1Recall that ΩB is an H-space with multiplication given by composition of loops (with
strict unit).
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We can summarize the previous information in the following double pullback
diagram:

PBI(G)
� LBp

�
jπ

ΩBI(G) = ΩBI(G)

jI(G)
- LpI(G)

- PBI(G)

? ?

I@
@

@ hπ

@
@

@

δ

? ?

δI(G)

�
�

� hI(G)

�
�

��

? ?

BI(G)
�

Bπ

BG
� BZG I(G) - EI(G)

pI(G)

- BI(G)

The retraction ρI(G) : LpI(G)
- ΩBI(G) and sπ : LBπ

- BZG (homotopy
inverse of hπ) combine to give a homomorphism

v = sπjπρI(G)hI(G) : I(G) - BZG .

Going back to the Puppe sequence 5.3 and using the appropriate H-ho-
motopy equivalences defined before, we obtain the following exact sequence
of based spaces and groups:

. . . - [B,ZG]
i∗ - [B,G]

π∗- [B, I(G)]
v∗- (5.4)

v∗- [B,BZG]
Bi∗- [B,BG]

Bπ∗- [B,BI(G)] .

Remark 5.4.1 From this point on, the space B is taken to be paracompact.

Because of the Classification Theorem 1.3.5, the function

Bπ∗ : [B,BG] - [B,BI(G)]

establishes the transition from principal G-bundles over B to their associated
fundamental bundles (see the definition in Section 2.1). This, together with
Theorem 3.1.4, implies the following result:

Proposition 5.4.2 Take arbitrarily f, f ′ ∈ [B,BG]. Then

Bπ∗(f) = Bπ∗(f
′) ⇐⇒ (∃` ∈ [B,BI(G)])f = B(r)∗(f

′, `) .

Using the language introduced in Chapter 3, we can paraphrase the pre-
vious proposition by saying that two principal G-bundles ξ and ξ′ over B,
classified respectively by f, f ′ : B - BG are fundamentally equivalent
⇐⇒ Bπ∗(f) = Bπ∗(f

′).
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5.5 The isotropy of the fundamental action

From various examples given in Chapter 4 we conclude that the fundamental
action B(r)∗ is not free; the obstruction to freenes is given by eventual non-
trivial isotropy groups. Let us discuss this point in a more general context
than that of Chapter 4. We recall from Lemma 3.1.3 that there is an action

� : EG(B)× EZG(B) - EG(B) , (ξ, λ) - ξ � λ ;

then, the isotropy group of a principal G-bundle ξ over B is given by

I(ξ) = {λ ∈ EZG(B) | ξ � λ = ξ} ;

on the other hand, if ξ is classified by f : B - BG, from what we did
before, we conclude that

I(ξ) ∼= {` ∈ [B,BZG] | B(r)∗(f, `) = f} .

Proposition 5.5.1 Let τ be a trivial G-bundle over B; then

I(τ) ∼= ker (Bi∗ : [B,BZG] - [B,BG]) .

Proof – The bundle τ is classified by a constant map co : B - BG; notice
that B(r)(co, `)∆ = Bi`: in fact, these two functions produce equivalent pull-
back bundles from the universal G-bundle ξG (this can be seen using Lemma
5.3.1 and comparing the transition functions of the pullback bundles). 2

The next result shows that the isotropy group of a principal G-bundle
depends on the equivalence class of fundamental equivalence of ξ; more pre-
cisely,

Proposition 5.5.2 If ξ and ξ′ are fundamentally equivalent then I(ξ) =
I(ξ′).

Now suppose that the base space B is a suspension, B = ΣA. In this
case, the classifying sequence 5.4 is an exact sequence of groups and group
homomorphisms; hence, we have the following:

Proposition 5.5.3 The isotropy group of a principal G-bundle over a sus-
pension B = ΣA is isomorphic ker Bi∗ (that is to say, it coincides with the
isotropy group of a trivial G-bundle over B).
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Proof – Let ξ be a real vector bundle represented by a map f : B - BG;
let λ ∈ I(ξ) be represented by ` : B - BZG. According to the definitions,
ξ � λ is represented by ψ(f × `)∆. On the other hand, B = ΣA is a COH-
space with comultiplication ν : ΣA - ΣA ∨ ΣA and thus, [ΣA,BG] is a
group. The product f • Bi` is given by σ(f ∨ Bi`)ν, where σ is the folding
map. But

ψ(f × `)∆ ∼ σ(f ∨Bi`)ν

(cfr. Theorem 4.2.3). Hence, f • Bi` ∼ f and so, Bi` is homotopic to the
constant map, that is to say, λ ∈ I(τ) (see Proposition 5.5.1). 2



Appendix A

The Milgram-Steenrod
classifying space

The contents of this appendix are taken freely from our paper The Milgram-
Steenrod construction of classifying spaces for topological groups [36].

A classifying space for a topological group G is the base space of a
principal G bundle (EG, pG, BG) with contractible total space EG. Classi-
fying spaces have been constructed using several different methods; amongst
the most popular constructions we recall the Milnor construction, the Dold-
Lashof-Fuchs construction (see [34] for an up-dated version) and the Milgram-
Steenrod contruction. The latter was introduced in [28] and then, taken up
and reformulated by N. Steenrod (see [42]). The objective of this appendix
is to review the contents of Steenrod’s paper in the light of more streamlined
techniques and, as a consequence, obtain new results not contained in [42]
about the classifying space functor B which transforms a topological group
G into a space BG. In fact, we shall prove that B is exact and preserves
products, normality, closed inclusions, proclusions and closed cofibrations;
moreover, we shall see that if Z is a central subgroup of a topological group
G such that the pair (G,Z) is a Z-equivariant closed cofibration, the map
Bq : BG

- BG/Z induced by the quotient map q : G - G/Z gives rise
to a locally trivial principal BZ-bundle.

Finally observe that, while in his version of Milgram’s construction, Steen-
rod selected as his basic category the category CG of compactly generated
topological spaces defined in [41], here we are working in the more convenient
(and larger) category wHk(Top) of weak Hausdorff k-spaces. As we shall see
in the sequel, this gives many advantages and more elegant proofs.

99
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A.1 Enlargement of actions and contractions

Suppose that we are given a closed subspace A ⊂ X ∈ wHk(Top) and an
action φ : A×G - A of a weak Hausdorff k-group G (that is, an object of
TopGr∗ ∩wHk(Top∗)). Then A×G , X ×G ∈ wHk(Top) and the pushout
space X of the diagram

X ×G �
i× 1G

A×G
φ

- A

is also a weak Hausdorff k-space (see [15, Corollary A.1.4]). Going quickly
over the construction of the pushout, we recall that one produces a commu-
tative diagram

A×G
φ

- A

i× 1G

? ?

ı× 1G

X ×G
φ̄

- X

in which the maps φ̄ and ı× 1G are the compositions of the appropriate
inclusion maps with a proclusion p : A t (X × G) - X. Notice that
because φ : A × G - A is an epimorphism, the elements of X can be
represented by classes [x, g] given by the equivalence relation on X × G
obtained by extending φ:

(x, g)R(x′, g′) ⇔
{

(x, g) = (x′, g′) if (x, g), (x′, g′) ∈ (X \ A)×G
xg = x′g′ if (x, g), (x′, g′) ∈ A×G ;

then X is the quotient space (X ×G)/R and φ̄ is the quotient map.

Proposition A.1.1 The space X is a G-space; the action Φ : X×G - X
extends φ.

Proof – The functor −×G preserves colimits (see [15, Appendix A.1]) and
therefore, X ×G is the pushout of the diagram

(X ×G)×G �
(i× 1G)× 1G

(A×G)×G
φ× 1G

- A×G
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Let τG : G×G - G be the multiplication of G. The maps

φ̄(1X × τG) : (X ×G)×G - X

(i× 1G)φ : A×G - X

are such that

(i× 1G)φ(φ× 1G) = φ̄(1X × τG)(i× 1G × 1G)

and therefore, by the universal property of pushouts, there exists a unique
map

Φ : X ×G - X

rendering commutative the resulting diagram. It is a straightforward mat-
ter to prove that Φ is an action defined by Φ([x, g], g′) = [x, gg′], for every
[x, g] ∈ X and every g′ ∈ G. The action Φ gives rise to an equivalence rela-
tion R on X. 2

The adjunction space X is the enlargement of the G-action of A (to X).

Remark A.1.2 - To carry on this construction within the category CG of
compactly generated topological spaces we must require that both pairs
(X,A) and (G, {uG}) are closed cofibrations; this is another instance where
there is a distinct advantage to work in wHk(Top).

Proposition A.1.3 The space X is homeomorphic to a closed subset of X.

Proof – The restriction to X × {uG} of the map

φ̄ : X ×G
i2 - A t (X ×G)

p
- X

is induced by the homeomorphism φ(−, uG) : A - A; hence it is a home-
omorphism onto the closed set φ̄(X × {uG}) of X. 2

Our objective now is to clarify the question whever the inclusion (X,X) is
a closed cofibration; to do this we shall give an auxiliary result which relates
relative homeomorphisms and adjunction spaces. We first recall that a map of
pairs (φ′, φ) : (X,A) - (Y,B) in wHk(Top) is a relative homeomorphism
if A is closed in X, the map φ′ is proclusive and induces a homeomorphism
(X \ A) - (Y \B).
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Lemma A.1.4 A map of pairs (φ′, φ) : (X,A) - (Y,B) is a relative
homeomorphism ⇐⇒ Y ∼= B tφ X, with φ proclusive.

Proof – Let (φ′, φ) : (X,A) - (Y,B) be a relative homeomorphism and
let Z be the adjunction space of X to B via φ. Consider the following
commutative diagram where the square is a pushout:

A
φ

- B

? ?

A
A
A
A
A
A
A
A
A
A
A
A
A
AU

X
φ̄

- Z
HHHHHH φ′

HHHHHHj

@
@

@ f
@

@
@R
Y

By the universal property of pushouts and the definition of relative homeo-
morphism, the sets Z ∼= Y ; thus, the map f is bijective. Since φ̄ = f−1φ′

and φ′ is a proclusion, f−1 is continuous and hence, Z ∼= Y as topological
spaces.

The converse is given by [15, Proposition A.4.8 (iii)] . 2

Proposition A.1.5 Suppose that (X,A) and (G, {uG}) are closed cofibra-
tions in wHk(Top); then (X,X) is a closed cofibration in wHk(Top).

Proof – The following pairs are closed cofibrations: (X × G,A× G), (X ×
G,X × {uG} ∪ A×G) and (X,A) (see [15, Proposition A.4.2 (iii), (iv) and
Proposition A.4.8 (ii)] , respectively). Now apply Lemma A.1.4 to the map
of pairs

(X ×G,X × {uG} ∪ A×G) - (X,X)

to end the proof. 2

We conclude our observations about the enlargement of actions noticing
that the universal property of pushouts proves easily that we can interpret
the enlargement of an action as a functor:
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Proposition A.1.6 For every ϑ ∈ (TopGr ∩ wHk(Top))(G,H) and every
map of pairs (f, u) : (X,A) - (Y,B) in wHk(Top) such that A is a G-
space, B is an H-space and u is ϑ-equivariant, then f×ϑ : X×G - Y ×H
is ϑ-equivariant with respect to the trivial actions 1X×τG, 1Y×τH and induces
a ϑ-equivariant quotient mapping f : X - Y .

We note explicitly that

(∀[x, g] ∈ X) , f([x, g]) = [f(x), ϑ(g)] .

Now we start to talk about contractions. Regard the unit interval I =
[0, 1] as a topological monoid under ordinary multiplication and define an I-
action as a map h′ : X × I - X such that h′(−, 1) = 1X and h′(x, tt′) =
h′(h′(x, t), t′), for every x ∈ X and t, t′ ∈ I. Let X ∈ wHk(Top) be based,
with base point x0; a contraction of X to x0 is an I-action h′ : X×I - X

that factors through the smash product h′ : X × I
p

- X ∧ I h - X (we
take 0 ∈ I as base point). In particular, the ordinary multiplication on I is a
contraction of I to 0. Denote the base point of X ∧ I by x0 ; then the trivial
action

τ : (X × I)× I - X × I , ((x, t), s) - (x, ts)

induces a contraction of X ∧ I to x0, called canonical contraction. In fact, τ
factors through X ∨ I and gives rise to a map

c′ : (X ∧ I)× I - X ∧ I , (x ∧ t, s) - x ∧ ts

which is the desired contraction.
Suppose that we are given x0 ∈ A ⊂ X (with A closed, X ∈ wHk(Top))

and a contraction h′ = hp : A× I - A of A to x0. The adjunction space
X̃ := Ath (X ∧ I) ∈ wHk(Top) is the enlargement to X of the contraction1

h′ : A× I - A. Let x̃0 be the base point of X̃.
Arguments similar to those used for the proofs of propositions A.1.1,

A.1.3, A.1.5 and A.1.6 show the following results:

Proposition A.1.7 The space X̃ has a contraction h̃′ : X̃ × I - X̃ that
extends the contraction h′ : A× I - A.

Proposition A.1.8 The space X is homeomorphic to a closed subset of X̃.

1If we stay in the category CG, we must require that (X, A), (X, {x0}) and (A, {x0})
are n.d.r.’s in order to guarantee that X̃ ∈ CG (see [42, Lemma 3.3]).
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Proposition A.1.9 If the pairs

(X,A) , (X, {x0}) and (A, {x0})

of wHk(Top) are closed cofibrations, then

(X̃, A) , (X̃, x0) and (X̃,X)

are closed cofibrations in wHk(Top).

Proposition A.1.10 Let (f, u) : (X,A) - (Y,B) be a based map of pairs
of weak Hausdorff based k-spaces and let h′ : A×I - A, k′ : B×I - B
be contractions such that k(u ∧ 1I) = uh. Then there exists a unique based
map f̃ : X̃ - Ỹ which commutes with the extensions of the contractions
h′ and k′ .

The last proposition shows that we can view the process of enlargement
of contractions functorially.

A.2 Enlargement of inclusions, proclusions,

cofibrations

In this section we prove that the functorial processes of enlargement of actions
and contractions preserve closed inclusions, proclusions and closed cofibra-
tions.

Proposition A.2.1 Let X, Y ∈ wHk(Top) with closed subsets A ⊂ X and
B ⊂ Y ; the corresponding inclusions are indicated by

i : A - X , j : B - Y .

Let G,H be weak Hausdorff k-groups acting on A and B respectively, with
actions

φ : X ×G - X

and
ψ : Y ×H - Y .

Take ϑ ∈ TopGr∩wHk(Top∗)(G,H) and a map of pairs (f, u) : (X,A) -

(Y,B) with u : A - B ϑ-equivariant; finally, suppose that ϑ and f are
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closed inclusions and f(X)∩B = u(A). Then the induced map f : X - Y
is an inclusion, and f(X) ∩ r(Y ) = fs(X), where s : X - X and
r : Y - Y are the inclusions obtained in the construction of X and Y
(see Proposition A.1.3).

Proof – The diagram below portrays the relationship between the various
spaces of the proposition:

A×G
φ

- A
@

@
@ u× ϑ

@
@

@R 	�
�

�

u �
�

�

B ×H
ψ

- B

i× 1G

?

j × 1H

? ?

?

Y ×H
ψ̄

- Y

�
�

� f × ϑ
�

�
�� I@

@
@

f @
@

@
X ×G

φ̄

- X

Since u is ϑ-equivariant and injective, u × ϑ is relation bipreserving (see
Lemma 1.2.3); then f × ϑ is relation bipreserving (with respect to the ex-
tended equivalence relations) and consequently, f is injective.

It remains to prove that f is closed. We begin by observing that in view of
[9, 1.10.1, Propositions 2 and 4], both f ×ϑ and u×ϑ are closed maps. Now
take a closed subset C ⊂ X; set K = φ̄−1(C) and take (f ×ϑ)(K) ⊂ Y ×H.
Because of [14, VI.6.2]

f(C) = ψ̄(f × ϑ)(K) closed ⇐⇒ ψ((f × ϑ)(K) ∩ (B ×H)) closed .

Hence, we must prove that ψ((f × ϑ)(K) ∩ (B ×H)) is closed in B. Notice
that because φ̄(K) = C is closed, [14, VI.6.2] can be used again to prove
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that φ(K ∩ (A×G)) is closed. The injectivity of u, f, ϑ and the assumption
f(X) ∩B = u(A) imply that

(f × ϑ)(K) ∩ (B ×H) = (u× ϑ)(K ∩ (A×G))

and thus,

ψ((f × ϑ)(K) ∩ (B ×H)) = uφ(K ∩ (A×G))

is closed, because u is a closed map. The last statement follows from simple
set theoretical considerations. 2

Corollary A.2.2 In the situation of the proposition, if u is relation bipreserv-
ing with respect to the equivalence relations defined in A and B by the actions
of G and H respectively, then f and f × ϑ are relation bipreserving.

Proof – The first statement is proved by direct computation; as for the sec-
ond, notice that f is ϑ-equivariant and injective and then use Lemma 1.2.3. 2

Before we prove a result similar to Proposition A.2.1 for the enlargement
of a contraction, we give an auxiliary lemma.

Lemma A.2.3 If f ∈ wHk(Top∗)((X, x0), (Y, y0)) is a closed inclusion,
then f ∧ 1 : X ∧ I - Y ∧ I is a closed inclusion.
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Proof – Construct the commutative diagram

X ∨ I
c∗ - (x0, 0)

@
@

@ f ∨ 1I

@
@

@R 	�
�

�
�

�
�

Y ∨ I
c′∗ - (y0, 0)

i

?

j

? ?

̄

?

ı̄

Y × I
c′∗

- Y ∧ I

�
�

� f × 1I

�
�

�� I@
@

@

f ∧ 1I
@

@
@

X × I
c∗

- X ∧ I

and observe that X ∧ I and Y ∧ I are quotient spaces of X × I and Y × I
by the equivalence relations R and S respectively, defined by

(x, t)R(x′, t′) ⇔ x = x′ = x0 or t = t′ = 0,

(y, t)S(y′, t′) ⇔ y = y′ = y0 or t = t′ = 0 .

Since f is injective, f×1I is relation bipreserving and thus, f∧1I is injective.
Let C ⊂ X∧I be closed; because f×1I is a closed map, (f×1I)(c∗

−1(C))
is closed in Y ×I, implying that (f∧1I)(C) is closed in Y ∧I (use [14] VI.6.2).

2

Proposition A.2.4 Let (f, u) : (X,A, x0) - (Y,B, y0) be a based map
of pairs in wHk(Top∗) such that A is a closed subset of X with a con-
traction h′ to x0, B is a closed subset of Y with a contraction k′ to y0,
and u is an I-mapping2. Suppose that f is a closed inclusion and that

2i.e., for every (x, t) ∈ A× I, u(xt) = u(x)t
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f(X) ∩ (B) = u(A). Then the quotient map f̃ : X̃ - Ỹ is a closed in-
clusion, and f̃(X̃)∩ r̃(Y ) = f̃ s̃(X), where s̃ and r̃ are the inclusions (X̃,X)
and (Ỹ , Y ) respectively.

Proof – Take the commutative diagram

A ∧ I h - A
@

@
@ u ∧ 1I

@
@

@R 	�
�

�

u �
�

�

B ∧ I k - B

i ∧ 1I

?

j ∧ 1I

? ?

j ∧ 1I

?

i ∧ 1I

Y ∧ I
k̄

- Ỹ

�
�

� f ∧ 1I

�
�

�� I@
@

@

f̃ @
@

@
X ∧ I

h̄

- X̃

recall that f ∧ 1I is a closed inclusion and proceed as in Proposition A.2.1.
2

Now consider the preservation of proclusions.

Proposition A.2.5 Let ϑ : G - H be in TopGr∩wHk(Top); let (f, u) :
(X,A) - (Y,B) be a mapping of pairs in wHk(Top) such that A is a
closed subset of X and a G-space with action φ, B is a closed subset of Y
and an H-space with action ψ, and u is ϑ-equivariant. Suppose that ϑ and
f are proclusions. Then the quotient map f : X - Y is a proclusion.

Proof – Just recall that a relation preserving proclusion f ∈ k(Top)(X,X ′)
defines a unique proclusion f̂ ∈ k(Top)(X/R,X ′/R′). 2
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Proposition A.2.6 Let (f, u) : (X,A, x0) - (Y,B, y0) be a based map
of pairs in wHk(Top∗) such that A is a closed subset of X with a contraction
h′ to x0, B is a closed subset of Y with a contraction k′ to y0, and u is
an I-mapping. Suppose that f is a proclusion. Then the quotient map f̃ :
X̃ - Ỹ is a proclusion.

The main tool to deal with closed cofibration is the following lemma whose
proof is straightforward.

Lemma A.2.7 Let B, B′, X and X ′ be spaces; let A ⊂ X and A′ ⊂ X ′

be closed subspaces; finally, let φ : A - B and φ′ : A′ - B′ be given
maps. Now construct the adjunction spaces X := AtφX and X ′ := A′tφ′B

′.
If (f, u) : (X,A) - (X ′, A′) and v : B - B′ are closed cofibrations, so
is the induced map f̄ : X - X ′.

This lemma is helpful in proving a modified version of proposition A.2.1
for closed cofibrations. The corresponding result for the enlargement of a
contration follows in a similar way after recalling that the wedge product
preserves closed cofibrations.

A.3 The construction of the classifying space

Let G be a weak Hausdorff k-group. We are going to construct two expanding
sequences in wHk(Top∗) with homeomorphic union spaces.

We begin by taking

E−1 := ∅ , D0 := {uG}

and the maps

φ−1 : ∅ ×G - ∅ , h′0 : {uG} × I - {uG} .

Notice that we can view φ−1 as a group action, h′0 as a contraction, and E−1

as a closed subset of D0; then construct by enlargement

E0 := E−1 tφ−1 (D0 ×G) and D1 := D0 th0 (E0 ∧ I) .

The weak Hausdorff k-spaces E0, D0 and D1 are based, with base point uG.
According to Proposition A.1.1 there exists a G-action φ0 : E0×G - E0.
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Moreover, in view of Proposition A.1.8, E0 is homeomorphic to a closed sub-
set of D1; from this we construct E1 as the enlargement of the action φ0

namely, E1 := E0 tφ0 (D1 × G). On the other hand, there is a contraction
h′1 : D1 × I - D1 (see Proposition A.1.7) and we know that D1 is home-
omorphic to a closed subset of E1 (see Proposition A.1.3); then we construct
the enlargement of the contraction D2 := D1 th1 (E1 ∧ I) . Up to now we
have a finite string of inclusions

E−1 ⊂ D0 ⊂ E0 ⊂ D1 ⊂ E1 ⊂ D2 ;

we construct an infinite string

(ED) E−1 ⊂ D0 ⊂ E0 ⊂ D1 ⊂ E1 ⊂ . . . ⊂ Dn ⊂ En ⊂ Dn+1 ⊂ . . .

by induction :
En−1 := En−2 tφn−2 (Dn−1 ×G) ,

Dn := Dn−1 thn−1 (En−1 ∧ I) .

Because of Propositions A.1.1 and A.1.7 we can also construct the following
actions and contractions:

φn−2 : En−2 ×G - En−2 ,

hn−1 := Dn−1 ∧ I - Dn−1

The next diagram is useful to understand the construction of En−1 and
Dn:

Dn−1 × I
pn−1

- Dn−1 ∧ I
hn−1

- Dn−1

? ? ?

(Dn−1 ×G)× I - En−1 × I - En−1 ∧ I - Dn

6 6

(En−2 ×G)× I
φn−2 × 1I

- En−2 × I
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The reader should observe that if the pair (G, {uG}) is a closed cofibration
in wHk(Top∗), then all the inclusions in the infinite sequence of spaces (ED)
above are closed cofibrations: in fact, (E0, D0) is a closed cofibration under
the assumption on (G, {uG}); for the other inclusions we proceed by induction
and use Propositions A.1.5 and A.1.9.

We obtained two expanding sequences of spaces in wHk(Top∗),

E−1 ⊂ E0 ⊂ E1 ⊂ . . . ⊂ En ⊂ . . . and

D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dn ⊂ . . . ,

whose union spaces are homeomorphic:

EG :=
∞⋃

n=−1

En =
∞⋃

n=0

Dn

(by definition, the topology of EG is determined by either of the families
{En|n ≥ −1} or {Dn|n ≥ 0}). Note that EG ∈ wHk(Top) by [15, Proposi-
tion A.5.2]. Furthermore, for every n ≥ 0, the inclusion in : Dn−1

- Dn

is nulhomotopic (take the homotopy inhn−1pn−1 : Dn−1× I - Dn); hence
EG

∼=
⋃∞

n=0Dn is weakly contractible.
The union space of the expanding sequence {En × G|n ≥ −1} is home-

omorphic to EG × G (see [15, Proposition A.5.1]); this fact determines the
existence of an action

φ :=
∞⋃

n=0

φn : EG ×G - EG .

By the same token
⋃∞

n=−1(Dn×I) = EG×I. Moreover, because I is compact
Hausdorff, there is a bijection between the sets of based maps

wHk(Top∗)(X ∧ I, Y ) ⇀↽ wHk(Top∗)(X,Map∗(I, Y ))

that is to say, − ∧ I is a left adjoint functor and thus, preserves colimits;
therefore

⋃∞
n=−1(Dn∧ I) ∼= EG∧ I. Under these circumstances, we can define

a contraction

h :=
∞⋃

n=0

hn : EG ∧ I - EG

and thus EG is actually a contractible space.
Now we construct the classifying space BG. For every n ≥ −1, let Bn

be the orbit space determined by the action φn : En × G - En and let
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pn : En
- Bn be the identification map. It is immediate to verify that

Bn is the push out of the triad

Bn−1
�

pn

En−1
- Dn,

and that {Bn|n ≥ −1} is an expanding sequence of spaces. Then, we define
the (Milgram-Steenrod) classifying space BG of G to be the union space of
the sequence {Bn|n ≥ −1}. Notice that BG is homeomorphic to the orbit
space determined by the action φ of G on EG and the identification map
pG : EG

- BG is the union map pG =
⋃∞

n=−1 pn.

The process just described, which gives rise to the based weak Hausdorff
k-spaces EG and BG associated to a weak Hausdorff k-group G, is known as
the Milgram-Steenrod construction. The next results show that the Milgram-
Steenrod construction is functorial.

Lemma A.3.1 Let ϑ : G - H be a homomorphism between two weak
Hausdorff k-groups. Then ϑ determines an equivariant map

Eϑ : EG
- EH .

Proof – The proof is done by induction and using Propositions A.1.6 and
A.1.10. By the Milgram-Steenrod construction EG is the union space of the
expanding sequence {En|n ≥ −1} with the action φ :=

⋃∞
n=0 φn. Likewise,

EH is the union space of the expanding sequence {Ên|n ≥ −1} with action

φ̂ :=
⋃∞

n=0 φ̂n. The first steps of the induction are trivial. Assume that we
have defined the equivariant map Eϑ,n−1 : En−1

- Ên−1; the next step
in the construction is depicted by the following commutative diagram with
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pushout squares:

En−1 ×G
φn−1

- En−1

@
@

@ Eϑ,n−1 × ϑ
@

@
@R 	�

�
�

Eϑ,n−1 �
�

�

Ên−1 ×H
φ̂n−1

- Ên−1

?

? ?

?

D̂n ×H - Ên

�
�

� Dϑ,n−1 × ϑ
�

�
�� I@

@
@

Eϑ,n
@

@
@

Dn ×G - En

2

Corollary A.3.2 Let ϑ : G - H be a homomorphism between two weak
Hausdorff k-groups. Then ϑ determines a map Bϑ : BG

- BH .

Proof – The existence of Bϑ is clear. We only wish to notice, for the sake of
completeness, that Bϑ =

⋃∞
n=0Bϑ,n, where the maps Bϑ,n : Bn

- B̂n are
induced by the corresponding maps Eϑ,n. 2

Let us put together the lemma and its corollary. Denote by EG the cate-
gory of weak Hausdorff k-spaces together with the action of a weak Hausdorff
k-group and equivariant k-maps.

Theorem A.3.3 The Milgram-Steenrod construction defines two functors

E : TopGr∗ ∩ wHk(Top∗) - EG , G - EG

B : TopGr∗ ∩ wHk(Top∗) - wHk(Top∗) , G - BG .
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With the aid of the mapping track we can replace pG by a fibration whose
fibre is weakly homotopic to ΩBG; however, under a mild assumption on the
pair (G, {uG}) we can obtain much more (see [42, Theorem 8.3] and [27,
Theorem 4.2]):

Theorem A.3.4 Let G be a weak Hausdorff k-group with identity element
uG such that (G, {uG}) is a closed cofibration in wHk(Top∗). Then
(EG, pG, BG) is a numerable principal G-bundle with contractible total space
EG.3

Notice that if (G, {uG}) is a closed cofibration, then the pairs

(Dn, En−1) , (En, Dn) , (En, En−1) , (Dn, Dn−1) ,

(Bn, Bn−1) , (EG, En) , (EG, Dn) and (BG, Bn)

are closed cofibrations; moreover,

(En, En−1) and (EG, En)

are G-closed cofibrations for each n.

Remark A.3.5 If G is a compact weak Hausdorff k-group, then EG and BG

are paracompact and normal.

In fact, we first notice that weak Hausdorff k-spaces are T1 and hence, G
is Hausdorff because topological groups are regular. The assertion is now
proved by induction and [15, Proposition A.5.1].

Thus, if G is compact and (G, {uG}) is a closed cofibration, the pre-
vious observation together with Theorem A.3.4 show that the map pG :
EG

- BG is a Hurewicz fibration with fibre G.
The last result of this section is about the homotopy type of G.

Proposition A.3.6 Let G be a compact Hausdorff topological group and
suppose that (G, {uG}) is a closed cofibration. Then there exists an H-space
preserving map

δ : ΩBG
- G

which is a homotopy equivalence.

3Thus (EG, pG, BG) is a universal bundle for numerable principal G-bundles.
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Proof – Let LpG
be the pullback of the triad

EG

pG
- BG

�
ε1 PBG .

Then, according to [35, Lemma 2.2.2], G ∼ LpG
. Since EG is contractible,

LpG
∼ EG × ΩBG ∼ ΩBG. Now use [6, Lemma 3.2]. 2

A.4 Inclusions, proclusions and cofibrations

of classifying spaces

Theorem A.4.1 The functors E and B preserve closed inclusions.

Proof – Let ϑ : G - H ∈ TopGr∩wHk(Top) be an inclusion. According
to the notation of Section A.3 we write

E−1 := ∅ , D0 := {uG} ,

φ−1 : ∅ ×G - ∅ , h′0 : {uG} × I - {uG} ,

Ê−1 := ∅ , D̂0 := {uH} ,

φ̂−1 : ∅ ×H - ∅ , ĥ′0 : {uH} × I - {uH} ,

EG :=
∞⋃

n=−1

En =
∞⋃

n=0

Dn ,

EH :=
∞⋃

n=−1

Ên =
∞⋃

n=0

D̂n ,

Eϑ,n : En
- Ên , Dϑ,n : Dn

- D̂n ,

and

Eϑ =
∞⋃

n=−1

Eϑ,n =
∞⋃

n=0

Dϑ,n : EG
- EH .

The hypotheses of Proposition A.2.1 are satisfied for the map of pairs

(Dϑ,0, Eϑ,−1) : (D0, E−1) - (D̂0, Ê−1)
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and those of Proposition A.2.4 hold true for the map of pairs

(Eϑ,0, Dϑ,0) : (E0, D0) - (Ê0, D̂0) ;

therefore, Dϑ,1 and Eϑ,0 are closed inclusions; an induction argument plus
Propositions A.2.1 and A.2.4 prove that, for every n ≥ 0, both Dϑ,n and Eϑ,n

are closed inclusions (this assertion is also true for Eϑ,−1). But the topology of
EG coincides with the final topology of the family {ιn : En

- EG|n ≥ −1}
(or of the family {ι′n : Dn

- EG|n ≥ 0}) as one can see from [15,
Lemma A.2.4] (and similarly for EH). It follows that the family of closed
inclusions {Eϑ,n|n ≥ −1} (or {Dϑ,n|n ≥ 0}) induces a closed inclusion
Eϑ : EG

- EH (see Lemma 1.1.3). This shows that E preserves closed
inclusions.

Now we study the map Bϑ : BG
- BH induced by Eϑ. We notice first

that the map Eϑ,0 : E0
- Ê0 is relation bipreserving in view of Corollary

A.2.2; by induction, all maps Eϑ,n are relation bipreserving, for every n ≥ −1
and thus, Eϑ is relation bipreserving. This shows that the induced map Bϑ

is injective.
It remains to prove that Bϑ is closed. This is done by induction on the

components of Bϑ. Clearly, Bϑ,0 is closed; assume that Bϑ,n−1 is closed and
take the commutative diagram

En−1

Eϑ,n−1
- Ên−1

@
@

@ in−1

@
@

@R 	�
�

�

i′n−1 �
�

�

Dn

Dϑ,n
- D̂n

pG,n−1

?

p̄G,n−1

? ?

p̄H,n−1

?

pH,n−1

Bn

Bϑ,n

- B̂n

�
�

� ı̄n−1

�
�

�� I@
@

@

ı̄′n−1
@

@
@

Bn−1

Bϑ,n−1

- B̂n−1
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Let C ⊂ Bn be closed; then K := p̄−1
G,n−1(C) is closed in Dn and, because

Dϑ,n is a closed map, Dϑ,n(K) is closed in D̂n. Using [14, VI.6.2] we conclude
that

Bϑ,n(C) ⊂ B̂n closed ⇐⇒ pH,n−1(Dϑ,n(K) ∩ Ên−1) ⊂ B̂n−1 closed .

Since Dϑ,n is injective and Dϑ,n(Dn) ∩ Ên−1 = Eϑ,n−1(En−1) (compare with
Proposition A.2.1), it follows that

Dϑ,n(K) ∩ Ên−1 = Eϑ,n−1(K ∩ En−1) .

Therefore,

pH,n−1(Dϑ,n(K)∩Ên−1) = pH,n−1Eϑ,n−1(K∩En−1) = Bϑ,n−1pG,n−1(K∩En−1)

which is closed in B̂n−1 since Bϑ,n−1 is a closed map, and pG,n−1(K ∩ En−1)
is closed in Bn−1, again by [14, VI.6.2], because p̄G,n−1(K) = C is closed in
Bn.

2

Theorem A.4.2 The functors E and B preserve proclusions.

Proof – Let ϑ : G - H be a proclusion of two weak Hausdorff k-groups.
According to the notation of Lemma A.3.1

EG =
∞⋃

n=−1

En =
∞⋃

n=0

Dn ,

EH =
∞⋃

n=−1

Ên =
∞⋃

n=0

D̂n

and

Eϑ =
∞⋃

n=−1

Eϑ,n : EG
- EH .

Induction and Proposition A.2.6 show that the maps Dϑ,n : Dn
- D̂n

(see notation of Lemma A.3.1) are proclusions; this, coupled with Proposition
A.2.5 and induction, shows that the maps Eϑ,n : En

- Ên are proclusions.
The map Eθ is clearly surjective as a union function of surjective functions,
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and by Lemma 1.1.3 its image has the final topology. This means that Eϑ is
a proclusion.

To complete the proof, first notice that BϑpG = pHEϑ and that pG, pH

and Eϑ are proclusions and then apply [9, 1.2.4, Proposition 7]. 2

Theorem A.4.3 The functors E and B preserve closed cofibrations between
weak Hausdorff k-groups with non-degenerate unit.

Proof – Let G,H ∈ (TopGr ∩ wHk(Top) be such that (G, {uG}) and
(H, {uH}) are closed cofibrations (i.e., uG and uH are non-degenerate). Sup-
pose that the pair (G,H) is a closed cofibration; we wish to prove that the
pairs (EG, EH) and (BG, BH) are closed cofibrations.

We first recall that under the non-degeneracy hypothesis of uG all pairs in
the infinite sequence of spaces (ED) defined during the construction of EG

are closed cofibrations (similarly for EH). Then, we prove that, for every n ≥
−1, (Ên, En) is a closed cofibration and use the appropriate result analogous
to [15, Proposition A.5.5]. The proof follows the same lines as Theorem
A.4.1.

Now for (BG, BH): we already know that all maps Bϑ,n are closed in-

jections; in order to prove that the pairs (B̂n, Bn) are all closed cofibrations
we proceed again by induction; this is a routine exercise (refer back to the
diagram of Theorem A.4.1). 2

A.5 The group structure of EG

We begin by observing that the results stated in sections 5, 6 and 7 of [42] are
still valid if one works withing the category of weak Hausdorff k-spaces. We
have already noted that EG is a contractible space; moreover, as proved by N.
Steenrod, EG is a topological group [42, Theorem 7.6 (e)]. Our immediate
objective is to review this group structure; to do this, it is necessary to
conduct a refined analysis on the nature of EG. First recall how to express
the elements of EG (see details in [42]). Let ∆n be the n-simplex of IRn defined
by the inequalities 0 ≤ t1 ≤ . . . ≤ tn ≤ 1 and let δn be its interior; imbed ∆n

in ∆n+1 by adding the (n+ 1)th coordinate tn+1 = 1. A point of Gn ×∆n is
represented by its coordinates in the shuffled form [g1, t1, . . . , gn, tn]. Imbed
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Gn×∆n in Gn+1×∆n+1 by adding the coordinates gn+1 = uG and tn+1 = 1.
Theorem 5.1 of [42] shows that, for every n ≥ 0, there exists a proclusion
kn : Gn ×∆n

- Dn, whose restriction to Gn−1 ×∆n−1 is kn−1 and thus,
the union map

k :=
∞⋃

n=0

kn :
∞⋃

n=0

(Gn ×∆n) - EG

is a well defined proclusion. Thus, for every x ∈ EG :=
⋃∞

n=0Dn, there exist
a non negative integer n and an element u ∈ Gn × ∆n such that x ∈ Dn

and kn(u) = x. Two elements u, v ∈ Gn × ∆n are said to be equivalent if
kn(u) = kn(v); the resulting quotient space can be viewed as the space

Nn =
n⋃

j=0

(G \ {uG})j × (δj ∪ δj−1)

and the restriction of kn to Nn is a bijection to Dn (see [42, Corollary 5.4]).
At this point consider the free abstract group ẼG generated by all pairs

(g, t) ∈ G × I: this is the set
⋃∞

n=0(G × I)n with multiplication µ′ : ẼG ×
ẼG

- ẼG defined by juxtaposition of monomials (the unit element is
the empty monomial ⊥ corresponding to n = 0). Let E ′

G be the quotient
group obtained from ẼG using the following Fundamental Relations: for every
g, g′ ∈ G and every t, t′ ∈ I,

1. (g, 0) = (uG, t) = uẼG
= ⊥ ,

2. (g, t)(g′, t) = (gg′, t) ,

3. if 0 < t′ < t ≤ 1, then (g, t)(g′, t′) = (g · g′ · g−1, t′)(g, t) .

Notice that if G is abelian, then E ′
G is also abelian.

A monomial (g1, t1) . . . (gk, tk) is said to be in normal form if it is the
empty monomial or if 0 < t1 < . . . < tk ≤ 1 and each gi ∈ G \ {uG}.
Moreover, each monomial is equivalent to one and only one monomial in
normal form; the equivalence is obtained by using the previous Fundamental
Relations. Thus E ′

G is isomorphic to the abstract subgroup of ẼG deter-
mined by all the monomials in normal form (for example, uE′

G
corresponds

to the empty monomial ⊥). Next, define f : E ′
G

- EG as the function
which assigns to each element (g1, t1) . . . (gm, tm) in normal form the element
km([g1, t1, . . . , gm, tm]) of EG (if m = 0, f(uE′

G
) = f(⊥) = uG ∈ EG). Ac-

cording to [42, Theorem 7.6 (a)], f is a bijection. One should observe that,
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even if the two sets ẼG and
⋃∞

n=0G
n × ∆n are not isomorphic, the sets E ′

G

and N∞ are indeed isomorphic, via the function

ε : E ′
G

- N∞ , (g1, t1) . . . (gn, tn) - [g1, t1, . . . , gn, tn]

(in normal form); then f = kε. Finally, define a multiplication µ : EG ×
EG

- EG as the composition

EG × EG

f−1×f−1

- E ′
G × E ′

G

µ′
- E ′

G

f
- EG

(the continuity of µ is shown in [42, Theorem 7.6 (d)]).
Let ϑ : G - H be a homomorphism between two weak Hausdorff

k-groups. An analysis of the construction of Eϑ shows that

Eϑ((g1, t1) . . . (gn, tn)) = (ϑ(g1), t1) . . . (ϑ(gn), tn)

In particular, we obtain the following result (cf. Theorem A.3.3):

Proposition A.5.1 E is a covariant functor of the category of weak Haus-
dorff k-groups to itself.

Let E ′0
G be the set of all elements (g, 1) ∈ E ′

G; with the identification
(uG, 1) ≡ ⊥, the elements of E ′0

G are all in normal form and f : E ′0
G

- E0 ⊂
EG (see the definition of E0 in Section A.3). On the other hand, we can
identify E ′0

G with the topological group G by the function iG : G - E ′
G

which takes an arbitrary g ∈ G into (g, 1); hence, G can be viewed as a closed
topological subgroup of EG. Furthermore, the multiplication µ restricted to
EG × G ⊂ EG × EG coincides with the action φ : EG × G - EG defined
somewhat abstractly in Section A.3; in other words, the following diagram
commutes:

EG ×G
φ

- EG

6

f−1 × iG

?

f

E ′
G × E ′

G

µ′
- E ′

G

Therefore, φ acts on the elements of EG ×G as follows:

φ(((g1, t1) . . . (gk, tk)), g) =

{
f((g1, t1) . . . (gkg, tk)) if tk = 1
f((g1, t1) . . . (gk, tk)(g, 1)) if tk < 1



A.5. THE GROUP STRUCTURE OF EG 121

The previous considerations also show that the space BG = EG/G of G-orbits
in EG can be identified to the space of right cosets of the topological group
EG with respect to its subgroup G. In particular, if G is normal in EG, the
classifying space BG is a topological group.

We simplify the notation by omitting f and identifying implicitly the
elements of EG with the corresponding monomials in E ′

G in normal form
(this can be done as f is bijective and thus, the equivalence classes of EG are
equivalence classes of E ′

G).
The orbit of an element x = (g1, t1) . . . (gn, tn) ∈ EG (in normal form) is

the set

xG = {(g1, t1) . . . (gn, tn)(g, 1) | g ∈ G} .

Thus, according to the rules established, if tn = 1 the elements of xG have
the form (g1, t1) · · · (gng, 1) and therefore, we take (g1, t1) · · · (gn−1, tn−1) to
represent it. This shows that as sets

BG
∼= {(g1, t1) . . . (gn, tn) ∈ EG | tn < 1, n = 0, · · · ,∞}

(the elements of EG are always taken in normal form and if n = 0, we have
the neutral element ⊥).

If ϑ : G - H is a morphism between two weak Hausdorff k-groups,

Bϑ : xG ≡ [x] - Eϑ(x)H ≡ [Eϑ(x)] .

Proposition A.5.2 The continuous group multiplication in EG induces a
continuous group multiplication in BG if, and only if, G is abelian.

Proof – It is enough to prove that iG(G) is normal in EG ⇐⇒ G is
abelian.

Recall that iG(G) is the set of monoids of the form (g, 1) with g ∈ G.
Thus, we should check that ∀x ∈ EG and (g, 1) ∈ iG(G)

x(g, 1)x−1 ∈ iG(G),

iff G is abelian.
If G is abelian, the Fundamental Relations 2. and 3. show that, for every

monomial (h, s) ∈ EG and every (g, 1) ∈ iG(G),

(g, 1)(h, s) = (ghg−1, s)(g, 1) = (h, s)(g, 1)
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if s < 1, and

(g, 1)(h, s) = (gh, 1) = (hg, 1) = (h, 1)(g, 1)

if s = 1. Hence, for every x ∈ EG,

x(g, 1)x−1 = (g, 1)xx−1 = (g, 1) ∈ iG(G) ,

and thus iG(G) is normal in EG.
Conversely, if iG(G) is normal in EG, for every g, h ∈ G and every s < 1,

(h, s)(g, 1)(h−1, s) ∈ iG(G) and hence,

(h, s)(g, 1)(h−1, s) = (h, s)(gh−1g−1, s)(g, 1) = (hgh−1g−1, s)(g, 1) ∈ iG(G) ;

it follows that hgh−1g−1 = uG and thus, G is abelian since g and h were
taken arbitrarly. 2

Observe that, when G is abelian, the multiplication in BG is naturally
induced from the one of EG, i.e. the following diagram commutes

EZ × EZ

µ
- EZ

pZ × pZ

? ?

pZ

BZ ×BZ

µ̂

- BZ

Let G and H be two weak Hausdorff k-groups; the function

ξG,H : EG×H
- EG × EH

ξG,H{((g1, h1), t1) . . . ((gn, hn), tn)} = ((g1, t1) . . . (gn, tn), (h1, t1) . . . (hn, tn))

is a natural homeomorphism of weak Hausdorff k-groups (see of [42, Theo-
rems 6.2 and 7.6 (g)]); in other words, the functor E preserves finite products.

The natural homeomorphism ξG,H passes on to the orbit spaces, that is
to say, there exists a map

ρG,H : BG×H
- BG ×BH
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ρG,H{[((g1, h1), t1) . . . ((gn, hn), tn)]} =

([(g1, t1) . . . (gn, tn)], [(h1, t1) . . . (hn, tn)])

such that the following diagram commutes

EG×H

ξG,H
- EG × EH

pG×H

? ?

pG × pH

BG×H
ρG,H

- BG ×BH

The map ρG,H is actually a natural homeomorphism; in other words, the
functor B preserves finite products.

A.6 The functors E and B: algebraic proper-

ties

In this section, we provide the main algebric divices that makes the Milgram-
Steenrod construction a powerfull machinary to work with classifying spaces.

A.6.1 Exactness

Theorem A.6.1 The functors E and B are exact.

Proof – Let

A
ϑ - G

ϕ
- C
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be a sequence in TopGr ∩ wHk(Top) such that im ϑ = kerϕ; then, the
following diagram commutes:

A
ϑ - G

ϕ
- C

iA

? ?

iG

?

iC

EA

Eϑ - EG

Eϕ
- EC

pA

? ?

pG

?

pC

BA

Bϑ

- BG

Bϕ

- BC

Take arbitrarily z = (a1, s1) . . . (ak, sk) ∈ EA. Then

EϕEϑ(z) = Eϕϑ(z) =

= (ϕϑ(a1), s1) . . . (ϕϑ(ak), sk) = (uC , s1) . . . (uC , sk) = ⊥EC
.

Hence, im Eϑ ⊆ kerEϕ. Now, take x = (g1, t1) . . . (gn, tn) ∈ kerEϕ in normal
form; then

Eϕ(x) = (ϕ(g1), t1) . . . (ϕ(gn), tn) = ⊥EC

and since 0 < ti < tj for all 0 ≤ i < j ≤ n, ϕ(gj) = uG; thus, for every
j ∈ [0, n], there exists an element aj in A such that gj = ϑ(aj). Therefore,
x = Eϑ(z) with z = (a1, t1) . . . (an, tn), and kerEϕ ⊆ im Eϑ.

Now let us look at the sequence of classifying (based) spaces. Let [z] ∈ BA

be given; then, for every z ∈ [z] in EA,

BϕBϑ([z]) = [EϕEϑ(z)] = [⊥EC
] ,

and thus, im Bϑ ⊆ kerBϕ.
Suppose that [x] ∈ kerBϕ is such that Bϕ([x]) = [⊥EC

]. But Bϕ([x]) =
[Eϕ(x)] for every representative x ∈ [x] and thus, Eϕ(x) = ⊥EC

(c, 1), for
some c ∈ C. Suppose that x = (g1, t1) . . . (gn, tn) in [x] with tn < 14; then

4This is possible because if x′ = (g′1, t
′
1) . . . (g′m, t′m) and t′m = 1, it is sufficient to take

x = x′(g′−1
m , t′m).
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c = uC , and Eϕ(x) = ⊥EC
. The exactness of the middle row of the previous

diagram now implies that there exists z in EA, such that x = Eϑ(z), and
hence [x] = [Eϑ(z)] = Bϑ([z]), that is to say, kerBϕ ⊆ im Bϑ. 2

A.6.2 Group theoretical invariants of E
The functor E behaves well with respect to subgroups, normality and related
properties. We start this series of results by observing that if G is a weak
Hausdorff k-group and K is a topological subgroup of G, then EK is a topo-
logical subgroup of EG: in fact, the closed inclusion ι : K - G gives rise
to a closed inclusion Eι : EK

- EG (see Theorem A.4.1) and Eι(EK) is
an abstract subgroup of EG.

Corollary A.6.2 The functor E preserves normality of subgroups.

Proof – Let N be a normal subgroup of G; Theorem A.6.1 applied to the
short exact sequence

0 - N
i - G

p
- G/N - 0

gives rise to a short exact sequence of groups

0 - EN

Ei - EG

Ep
- EG/N

- 0 .

Then, for every x ∈ EG and every y ∈ EN , xyx−1 ∈ kerEp = im Ei and thus
xyx−1 ∈ EN . 2

If A is an abelian subgroup of G, then EA is an abelian subgroup of EG;
in particular, if ZG is the centre of G, then EZG is an abelian subgroup of
EG. Actually, we can go one step further:

Lemma A.6.3 EZG coincides with the centre ZEG of EG.

Proof – Take two monomials (g, s) ∈ EG and (z, t) ∈ EZG. If s > t

(g, s)(z, t) = (gzg−1, t)(g, s) = (z, t)(g, s) ;
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if s < t

(z, t)(g, s) = (zgz−1, s)(z, t) = (g, s)(z, t) ;

if t = s

(g, s)(z, t) = (gz, s) = (zg, s) = (z, t)(g, s) .

For arbitrary elements in normal form, the proof follows after successive ap-
plications of the Fundamental Relations. 2

More generally,

Corollary A.6.4 Let Z be a central topological subgroup of G ∈ TopGr ∩
wHk(Top). Then EZ is a central subgroup of EG; in short, E preserves
centrality.

Now we wish to prove that E preserves quotient groups obtained from
normal subgroups: more precisely:

Theorem A.6.5 Let N be a normal subgroup of the weak Hausdorff k-group
G. Then EG/N

∼= EG/EN in TopGr ∩ wHk(Top).

Proof – Take the short exact sequence of weak Hausdorff k-groups

0 - N
ι - G

π - G/N - 0

and notice the following: (i) Eι : EN
- EG is a closed inclusion in

TopGr∩wHk(Top) (Theorem A.4.1); (ii) Eπ : EG
- EG/N is a proclusion

in TopGr ∩ wHk(Top) (Theorem A.4.2); (iii) the sequence

0 - EN

Eι - EG

Eπ - EG/N
- 0

is exact (Theorem A.6.1). The last observation shows that as abstract groups,
EG/N

∼= EG/EN ; the question is now to prove that actually we have a home-
omorphism in TopGr∩wHk(Top). To this end, we refer to [37, Theorem 12,
III.19] and notice that we have to adjust Pontrjagin’s proof in the sense that
in his treatment Eπ is an open map, while in our case, Eπ is a proclusion. Let
f : EG/N

- EG/EN be the function that maps an element Eπ(x) ∈ EG/N
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into the coset xEN and consider the diagram

EG

Eπ

?

@
@

@ q
@

@
@R

EG/N

f

- EG/EN

in which EG/EN has the final topology determined by q. According to [37,
Theorem 12, III.19] f is a bijection and its inverse f−1 is continuous; the
continuity of f follows from the fact that fp = q is continuous. 2

A.6.3 Actions of classifying spaces and quotients

There is a similar result for the classifying spaces in the particular case in
which N is a central subgroup of the weak Hausdorff k-group G.

First, let A be an abelian subgroup of H ∈ TopGr∗ ∩ wHk(Top∗) and
let r : G × A - G be an action that commutes with the translations of
G. Then the group EA is abelian and BA := EA/A is an abelian group with
the natural quotient structure (see Section A.5). Because E and B preserve
finite products (see the end of Section A.5) we can build up the commutative
diagram in wHk(Top∗)

G× A
1 - G× A

r - G

iG × iA

? ?

iG × iA

?

iG

EG × EA

ξ−1
G,A

- EG×A

Er - EG

pG × pA

? ?

pG×A

?

pG

BG ×BA

ρ−1
G,A

- BG×A

Br

- BG



128APPENDIX A. THE MILGRAM-STEENROD CLASSIFYING SPACE

where ξ−1
G,A and ρ−1

G,A are natural homeomorphisms in TopGr∩wHk(Top) and
wHk(Top), respectively.

Theorem A.6.6 If r : G×A - G is a right action which commutes with
the translations of G, then the maps

E(r) := Erξ
−1
G,A and B(r) := Brρ

−1
G,A

are right actions.

The theorem says that, modulo certain natural homeomorphisms, the func-
tors E and B preserve the right actions of abelian groups which commute
with translations.

Proof – Let x = (g1, s1) . . . (gn, sn) ∈ EG be in normal form. Then

E(r)(x,⊥EA
) = Er((g1, uA), s1) . . . ((gn, uA), sn)) =

= (r(g1, uA), s1) . . . (r(gn, uA), sn) = x ;

furthermore, for any representative z ∈ [⊥EA
],

B(r)([x], [⊥EA
]) = Br([ξ

−1
G,A(x, z)]) = Br([x]) = [Er(x)] = [x] .

The proof of the associativity is based on the fact that in the present case
r and the multiplication m of EA are homomorphisms. Therefore, we can
construct the commutative diagram

EG × EA × EA

∼=- EG×A × EA

Er × 1
- EG × EA

∼=

?

@
@

@
∼=

@
@

@R ?

∼=

?

∼=

EG × EA×A ∼=
- EG×A×A

Er×1
- EG×A

1× Em

?

E1 ×m

?

@
@

@

Er(1×m)

Er(r×1)

@
@

@R ?

Er

EG × EA ∼=
- EG×A

Er

- EG

where the isomorphisms are given by the maps ξ−1 defined at the end of Sec-
tion A.5. The associativity of B(r) then comes by projection of the diagram
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onto the corresponding diagram of classifying spaces. 2

Notice that, since E(r) is a group homomorphism, it commutes with the
multiplication in EG (see Lemma 1.2.2). Furthermore, by straightforward
computations, we can verify the following:

Theorem A.6.7 Both functors E and B preserve freedom of actions.

Now, consider tha case when the group A acting on G is one of its sub-
groups, and the action is the natural one given by restriction of multiplication
of G; this action is an homomorphism iff A is central in G. Then, if Z is a
central subgroup of G, there are two actions of EZ over EG, the one defined in
Theorem and the one given by restriction of the multiplication, but it is easy
to show that actually they coincide, i.e. the following diagram commutes:

G× Z
1 - G× Z

r - G

iG × iZ

? ?

iG×Z

?

iG

EG × EZ

ξ−1

- EG×Z

Er - EG

1

? ?

1

EG × EZ
α

- EG

For classifying spaces, where we have not a group moltiplication, a weaker
result is still valid. In fact, in this case BZ is a subspace of BG, and by
restriction of the action r in the diagram in the proof of Theorem A.6.6 to
{uG} × Z, we can show that the restriction of the action B(r) to {b0} ×BZ

coincides with the inclusion of BZ in BG (here b0 is the preferred point of
BG, i.e. the image of G under pG).

Finally, the analogous of Theorem A.6.5 for classifying spaces is the fol-
lowing:

Theorem A.6.8 For any G ∈ TopGr∩wHk(Top) and any central subgroup
Z ⊂ G, BG/Z

∼= BG/BZ.
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Proof – The sequences

0 - EZ

Eι - EG

Eπ - EG/Z
- 0

and

0 - BZ

Bι - BG

Bπ - BG/Z
- 0

are exact in the respective categories by Theorem A.6.1 and EG/Z
∼= EG/EZ

because of Theorem A.6.5. From [10, 3.2.8, Proposition 22] we conclude that

BG = EG/G ∼= (EG/Z)/(G/Z) .

This, together with the fact that BZ acts on BG (see Theorem A.6.6) and
Lemma 1.2.10 imply the following sequence of homeomorphisms:

BG/BZ
∼= ((EG/Z)/(G/Z))/(EZ/Z) =

= ((EG/Z)/(EZ/Z))/(G/Z) = (EG/EZ)/(G/Z) =

= EG/Z/(G/Z) = BG/Z .

2

A.7 The functors E, B and principal bundles

In this section we seek the pairs of weak Hausdorff k-groups that give rise to
(locally trivial) principal bundles by application of E and B. We begin with
the functor E .

Proposition A.7.1 Let G be a weak Hausdorff k-group with non-degenerate
unit and N be a normal subgroup of G such that i : N - G is an N-
equivariant closed cofibration. Let π : G - G/N be the quotient map.
Then Ei : EN

- EG is an EN -equivariant closed cofibration and

(EG, Eπ, EG/N , EN)

is a principal EN -bundle.
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Proof – EG is a weak Hausdorff k-group (Proposition A.5.1) with non-
degenerate unit (Theorem A.4.3); furthermore, EN is a normal subgroup
of EG (Corollary A.6.2).

The identity element uG ∈ G is a non-degenerate element of N and the
class N is non-degenerate in G/N . We also know (from Theorem A.4.3) that
Ei : EN

- EG is a closed cofibration; however, this is not enough. Take
the commutative diagram

EN

Ei - EG

q

? ?

q

EN/EN

Êi

- EG/EN

and observe that Êi : EN/EN
- EG/EN is a closed cofibration; it follows

that Ei : EN
- EG is an EN -equivariant closed cofibration in view of

Lemma 1.2.8.
The second part of the proposition follows from Proposition 1.2.9. 2

Now let us go to the functor B.

Theorem A.7.2 Let G be a weak Hausdorff k-group with non-degenerate
unit. Let Z be a central subgroup of G such that the inclusion Z ⊂ G is a
Z-equivariant closed cofibration; finally, let π : G - G/Z be the quotient
map. Then (BG, Bπ, BG/Z , BZ) is a principal BZ-bundle.5

Proof – Let us take EG, G and EZ for X, G and H, respectively, of Proposi-
tion 1.2.13. Take the map Ep : EG

- EG/EZ and form the commutative
diagram

EG
∆ - EG × EG

Ep

? ?

Ep × Ep

EG/EZ

∆

- EG/EZ × EG/EZ

5In general we do not know if this bundle – and that of Proposition A.7.1 – is numerable.
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Then observe that the space E∗
G coincides with (Ep × Ep)

−1∆(EG/EZ) and
thus E∗

G is closed in EG × EG because EG/EZ
∼= EG/Z is weak Hausdorff.

Then, according to Proposition 1.2.13 and Theorem 1.3.4,

(BG/EZ , q, EG/G = BG, EZ , EZ)

is a principal EZ-bundle. We conclude the proof using the second part of
Lemma 1.2.11 and observing that Z acts trivially on BG. 2

Remark A.7.3 If G is compact, then BG/Z is paracompact (see Remark
A.3.5) and so, (BG, Bq, BG/Z , BZ) is a numerable bundle and moreover, is a
Hurewicz fibration.
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