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Abstract: We consider a class of singular Riemannian manifolds, the deformed spheres
SN

k , defined as the classical spheres with a one parameter family g[k] of singular
Riemannian structures, that reduces for k = 1 to the classical metric. After giving
explicit formulas for the eigenvalues and eigenfunctions of the metric Laplacian �SN

k
,

we study the associated zeta functions ζ(s,�SN
k
). We introduce a general method to deal

with some classes of simple and double abstract zeta functions, generalizing the ones
appearing in ζ(s,�SN

k
). An application of this method allows to obtain the main zeta

invariants for these zeta functions in all dimensions, and in particular ζ(0,�SN
k
) and

ζ ′(0,�SN
k
). We give explicit formulas for the zeta regularized determinant in the low

dimensional cases, N = 2, 3, thus generalizing a result of Dowker [25], and we compute
the first coefficients in the expansion of these determinants in powers of the deformation
parameter k.

1. Introduction

In the last decades there has been a (continuously increasing) interest in the problem of
obtaining explicit information on the zeta regularized determinant of differential oper-
ators [2, 49, 37, 50, 43, 61]. Despite the lack of a general method, a lot of results are
available in the literature for various particular cases or by means of some kind of approx-
imation. Moreover, quite complete results have been obtained for the geometric case of
the metric Laplacian on a Riemannian compact manifold for some classes of simple
spaces: spheres [18, 11], projective spaces [54], balls [5], orbifolded spheres [25], com-
pact (and non-compact) hyperbolic manifolds [20, 9, 10] or in particular cases: Sturm
operators on a line segment [8, 45], cone on a circle [56].

In particular, many works in the recent physical literature applied this zeta function
regularization process to study the modifications induced at quantum level by some
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kind of deformation of the background space geometry of physical models [40, 24,
22, 52]. In this context, a full class of deformed spaces, called deformed spheres, has
been introduced in [52], where the perturbation of the heat kernel expansion has been
studied. This is a particularly interesting class of spaces in Einstein theory of gravita-
tion and in cosmology, since the appearance of a non-trivial deformation produces a
symmetry breaking of the space. In fact, the deformed sphere may be considered as the
Euclidean version of the a deformed de Sitter space, which is particularly relevant in
modern cosmology, since it represents the inflationary as well as the recent accelerated
phase. It is well known that the quantum effective action is related to the regularized
functional determinant of Laplace type operators (see, for example [30] and references
therein). As a consequence, an expansion of the functional determinant with respect to
the deformation parameter around its spherical symmetric value describes the effects of
such geometric symmetry breaking.

It is therefore a natural question to see if the explicit calculation of the zeta determi-
nant for the Laplace operator on this class of spaces is possible. In this work we give a
positive answer to this question, establishing a general method that permits to compute
the zeta regularized determinant on a deformed sphere of any dimension. Actually, for
a particular discrete set of values of the deformation parameter k, the N -dimensional
deformed sphere turns out to be isometric to the so-called orbifolded sphere, the quo-
tient space SN/�, of the standard N -sphere by a finite subgroup of the rotation group
ON (R). Determinants on these spaces have been studied by J.S. Dowker in a series of
works [25–27], where results are also obtained for different couplings. Under this point
of view, the present work is a generalization of the results of Dowker to the continuous
range of variation of the deformation parameter k, and in fact the results are consistent
(see Sect. 4).

The main motivation of the present work, beside the particular result, is that the
method introduced has the advantage of being completely general and not related to this
specific problem. In particular, we show how it can be applied to obtain the main zeta
invariants of some classes of abstract simple and double zeta functions (Sect. 4.2 and
4.3). In order to give the explicit form for the zeta function on the deformed spheres,
we produce an explicit description of the spectrum and of the eigenfunctions of the
associated Laplace operator in any dimension (Proposition 3.2). In particular, the 2
dimensional case turns out to be very interesting, from the point of view of geometry:
in fact the 2 dimensional deformed sphere is a space with singularities of conical type.
This class of singular spaces was introduced and studied by Cheeger [17] and although
since then became a subject of deep interest and investigation, there are in fact relatively
few occasions where explicit results can be obtained.

2. The Geometry of the Deformed Spheres

In this section we provide the definition of the N dimensional deformed sphere SN
k , where

k is the deformation parameter, and we study its geometry. This produces a particular
interesting relation with elliptic function and conical singularity, at least in the 2 dimen-
sional case. The deformed N -sphere is defined as the standard N -sphere with a singular
Riemannian structure. When N = 2, we have an isometry with the surface immersed
in R

3 that can be obtained by rotating around an axis a curve described by an elliptic
integral function. The surface obtained presents two singular points of conical type, as
considered by Brüning and Seeley in [7] generalizing the definition of metric cone of
Cheeger [17]. Thus, the 2 dimensional deformed sphere is a space with singularities of
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conical type, and due to the great interest in this kind of singular space, both from the
point of view of differential geometry and zeta function analysis (see for example [23,
34, 19, 6, 68, 21]), its study is of particular interest (compare also with [56]).

Consider the immersion of the N + 1 dimensional sphere SN+1 in R
N+2,

⎧
⎪⎨

⎪⎩

x0 = sin θ0 sin θ1 . . . sin θN ,

x1 = sin θ0 sin θ1 . . . cos θN ,

. . .

xN+1 = cos θ0,

and the induced metric (in local coordinates) gSN+1 = (dθ0)
2 + sin2 θ0gSN . We deform

this metric as follows. Let k be a real parameter with 0 < k ≤ 1, and consider the family

gSN+1[k] = (dθ0)
2 + sin2 θ0gSN [k],

gS1[k] = k2(dθ0)
2.

This is a one parameter family of singular Riemannian metric on SN+1. We call the
singular Riemannian manifolds (SN+1, gSN+1[k]) the deformed spheres of dimension
N + 1 and we use the notation SN+1

k . By direct inspection, we see that the locus of the
singular points of the metric in dimension N + 1 is a sub-manifold isomorphic to two
disjoint copies of SN−1. In particular, in the 2 dimensional case we have

gS2 [k] = (dθ0)
2 + k2 sin2 θ0(dθ1)

2,

that shows that the deformed 2-sphere S2
k is a space with singularities of conical type as

defined in [7]. Proceeding as in [7] Sect. 7, we will show in the next subsection that the
singularity is generated by rotation of a curve in the plane.

Observe that, in a different language, S2
k is a periodic lune, that is to say it can be

pictured by taking a segment of the standard 2-sphere (a lune) and identifying the sides.
This situation generalizes to higher dimensions [1], and when the angle of the lune is πn ,
n ∈ Z, we obtain a spherical orbifold SN/�, as pointed out in the introduction.

Note also that, by direct verification on the local description of the metric gSN [k],
the non-compact Riemannian manifold obtained by subtracting the singular subspace
of the metric from SN

k is a space of constant curvature and locally symmetric. It is not
symmetric, as it is clear from the geometry of the low dimensional cases, or observing
that it is not simply connected (see Corollary 8.3.13 of [65]). On the other side, the
classical sphere SN

1 is a symmetric space; for example, the 2 dimensional one having the
maximum number N (N+1)

2 of global isometries, namely the 3 spatial rotations. There-
fore, the variation of the parameter k away from the trivial value produces a breaking
of the global symmetric type of the space. In particular for example on the 2 sphere it
breaks two continuous rotations in one discrete symmetry, namely the reflection through
the horizontal plane.

We conclude this subsection with the explicit expression for the Laplace operator.
With a = 1

k , the (negative) of the induced Laplace operator on the deformed sphere
SN+1

k is

�SN+1
k

= −d2
θ0

− N
cos θ0

sin θ0
dθ0 +

1

sin2 θ0
�SN

k
.
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2.1. Elliptic integrals and the deformed 2-sphere. The geometry of the 2 dimensional
case is particularly interesting and this subsection is dedicated to its study. The ellipse

x2 + y2

b2 = 1 can be given parametrically in the first quadrant by the formula
{

x = t,
y = b

√
1 − t2,

where 0 ≤ t ≤ 1. If we assume b ≤ 1, the arc length is

l(t) =
t∫

0

√

1 − k2s2

1 − s2 ds,

where k = √
1 − b2. With the new variables t = sin θ , s = sinψ , we obtain

{
x = sin θ,
y = b cos θ,

with 0 ≤ θ ≤ π
2 , and the arc length is

E(θ, k) = l(sin θ) =
θ∫

0

√

1 − k2 sin2 ψdψ,

that is the elliptic integral of the second kind in Legendre normal form [35] 8.110.2 (see
[48] or [64] for elliptic functions and integrals). Note that we cannot find a parameteri-
zation of the curve by the arc length reversing the above equation using Jacobi elliptic
functions. Consider now the curve f (sin θ) = E(θ, k). This is a smooth curve in the
interval 0 ≤ t ≤ 1, with f (0) = 0 and f (1) = E(π2 , k). We can rotate this function
around the horizontal axis getting a surface with a geometric singularity at the origin.
For further use, it is more convenient to place the surface in the upper half space. Thus,
we consider the function

f (t) = E(arccos
t

k
, k) =

√

1− t2

k2
∫

0

√

1 − k2s2

1 − s2 ds,

with 0 ≤ t ≤ k, and the curve: x = t , y = f (t). We reparametrize this curve by its arc
length

θ = l(t) =
t∫

0

√

1 + (y′(s))2ds =
t∫

0

1√
k2 − s2

ds = arcsin
t

k
,

obtaining
{

x = k sin θ,

y = f (k sin θ) = E(π2 − θ, k) = ∫ π
2 −θ

0

√
1 − k2 sin2 ψdψ,

with 0 ≤ θ ≤ π
2 (as before θ is the angle from the vertical axis).
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Let us now consider the surface Y +
k obtained by rotating the above curve along the

vertical axis. We have the parameterization

Y +
k :

⎧
⎨

⎩

x = k sin θ cosφ,
y = k sin θ sin φ,
z = E(π2 − θ, k),

where 0 ≤ φ ≤ 2π . This is clearly a smooth surface except at the possible singu-
lar point (0, 0, E(π/2, k))), with the circle Ck : x2 + y2 = k2, z = 0 of radius k
as boundary. Moreover, since the coordinate line tangent vectors on the boundary are
vφ = − sin φex +cosφey and vθ = ez , the tangent space is vertical and hence we can glue
smoothly Y +

k with the surface Y −
k obtained by reflecting through the horizontal plane.

We call the surface obtained Y 2
k = Y +

k ∪Y −
k , and the parameter k deformation parameter.

The surface Xk obtained from Y 2
k by removing the poles (0, 0,±k) is clearly a smooth

(non-compact) surface. The Riemannian metric induced on Xk from the immersion in
R

3 is

gY 2
k
(θ, φ) = (dθ)2 + k2 sin2 θ(dφ)2.

It is clear that the local map f : (θ, φ) �→ (θ, φ), extends to a diffeomorphism
f : Y 2

k → S2, and since f ∗gS2 [k] = gY 2
k

, it follows that f is an isometry between

S2
k = (S2, gS2 [k]) and (Y 2

k , gY 2
k
).

3. Spectral Analysis

In this section we give the eigenvalues and eigenfunctions of the Laplace operator on the
deformed sphere. As observed in Sect. 2, the two dimensional case is of particular inter-
est, since it represents an instance of a space with singularities of conical type that can
be solved explicitly. Therefore we spend a few words to describe the concrete operator
appearing in that case, using the language of spectral analysis for spaces with conical
singularities [17, 7]. With a = 1

k , the (negative) of the induced Laplace operator on the
deformed sphere S2

k is

�S2
1/a

= −∂2
θ − cos θ

sin θ
∂θ − a2

sin2 θ
∂2
φ,

on L2(S2
1/a). With the Liouville transform u = Ev, with E(θ) = 1√

sin θ
, we obtain the

operator

La = −∂2
θ − a2

sin2 θ
∂2
φ − 1

4

(

1 +
1

sin2 θ

)

.

This is a regular singular operator as defined in [7],

La = −d2
θ +

1

θ2 A(θ),

where

A(θ) = θ2

sin2 θ

(

−a2∂2
φ − 1

4

)

− 1

4
θ2,
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is a family of operators on the section of the cone, that is the circle of radius 1. It is
clear that the operator −∂2

φ has the complete system
{
µm = m2, eimφ

}
, with m ∈ Z,

where all the eigenvalues are double up to the null one that is simple with the unique
eigenfunction given by the constant map. Since the problem decomposes spectrally on
this system, we reduce to study the family of singular Sturm operators

Tam = −d2
θ +

a2m2 − 1
4

sin2 θ
− 1

4
.

In order to define an appropriate self adjoint extension, we introduce the following
boundary conditions at the singular points:

BC0 : lim
θ→0

θam
[(

am +
1

2

)
1

θ
f (θ)− √

θ f ′(θ)
]

= 0,

and

BCπ : lim
θ→π

(θ − π)am
[(

am +
1

2

)
1

θ − π
f (θ − π)− √

θ − π f ′(θ − π)

]

= 0.

These are the natural generalizations of the classical Dirichlet boundary conditions
(compare with [62] 8.4) and were first considered in [7]. In particular, it was proved in
[7], Sect. 7, that the self adjoint extension defined by these conditions is the Friedrich
extension.

The eigenvalues equation associated with the operators Tam , can be more easily stud-
ied going back to the original Hilbert space. This equation was in fact already studied by
Gromes [36], who found a complete solution. Generalizing the standard approach used
for the standard sphere (see for example [39]), we can prove that in fact this solution
provide a complete set of eigenvalues and eigenfunctions for the metric Laplacian, as
stated in the following lemma.

Lemma 3.1. The operator �S2
1/a

, has the complete system:

λn,m = (a|m| + n)(a|m| + n + 1), n ∈ N,m ∈ Z,

where all the eigenvalues with m 	= 0 are double with eigenfunctions (where the Pµν are
the associated Legendre functions)

eiamφP−am
am+n, e−iamφP−am

am+n,

while the eigenvalues n(n + 1) are simple with eigenfunctions the functions Pn.

Next, we pass to the higher dimensions. The (negative) of the induced Laplace oper-
ator on the deformed sphere SN+1

k is

�SN+1
k

= −d2
θ0

− N
cos θ0

sin θ0
dθ0 +

1

sin2 θ0
�SN

k

on L2(SN+1
k ). Projecting on the spectrum of �SN

k
, we obtain the differential equation

[

−d2
θ0

− N
cos θ0

sin θ0
dθ0 +

λSN
k

sin2 θ0

]

u = λSN+1
k

u.
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Following [52], we make the substitutions

u(θ0) = sinb θ0v(θ0),

z = 1

2
(cos θ0 + 1),

where b = 1
2

(
1 − N +

√
(N − 1)2 + 4λSN

k

)
. This gives the hypergeometric equation

[35] 9.151,

z(1 − z)v′′ + [γ − (α + β + 1)z]v′ − αβv = 0,

with

α = 1

2

(
2b + N ∓

√
N 2 + 4λSN+1

k

)
,

β = 1

2

(
2b + N ±

√
N 2 + 4λSN+1

k

)
,

γ = 1

2
(2b + N + 1).

Boundary conditions give the equation

2n + 2b + N = ±
√

N 2 + 4λSN+1
k
,

where n ∈ N, that, in turn, gives the recurrence relation

λSN+1
k

= n2 +
(

1 +
√
(1 − N )2 + 4λSN

k

)
n +

1

2

(
1 − N +

√
(1 − N )2 + 4λSN

k
+ 2λSN

k

)
.

We can prove that this recurrence relation is satisfied by the numbers

λSN
k

=
(

am + n1 + · · · + nN−1 +
N − 1

2

)2

− (N − 1)2

4
,

where ni ∈ N, must be a positive integer. We have obtained

b = am + n1 + · · · + nN−1,

α = −nN ,

β = 2(am + n1 + · · · + nN−1) + nN + N ,

γ = am + n1 + · · · + nN−1 +
N + 1

2
,

and the family of solutions for the eigenvalues equation (up to a constant)

unN (cos θ0) = sin
1−N

2 θ0 P
−am−n1−···−nN−1− N−1

2

am+n1+···+nN−1+ N−1
2 +nN

(cos θ0).

Using standard argument, we can then prove the following result.
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Lemma 3.2. The operator �SN+1
1/a

, has the complete system:

λm,n1,...,nN = (a|m| + n1 + · · · + nN )(a|m| + n1 + · · · + nN + N ), ni ∈ N,m ∈ Z,

where all the eigenvalues with m 	= 0 are double with eigenfunctions (up to normaliza-
tion)

eiamθN

N−1∏

j=0

sin
1−N+ j

2 (θ j )P
−am−n1−···−nN−1− j − N−1− j

2

am+n1+···+nN− j + N−1− j
2

(cos θ j ),

e−iamθN

N−1∏

j=0

sin
1−N+ j

2 (θ j )P
−am−n1−···−nN−1− j − N−1− j

2

am+n1+···+nN− j + N−1− j
2

(cos θ j ),

while the eigenvalues with m = 0 are simple with eigenfunctions

N−1∏

j=0

sin
1−N+ j

2 (θ j )P
−n1−···−nN−1− j − N−1− j

2

n1+···+nN− j + N−1− j
2

(cos θ j ).

4. Zeta Regularized Determinants

In this section we study the zeta function associated to the Laplace operator on the
deformed sphere SN+1

k . For this, we introduce two quite general classes of zeta func-
tions and we compute the main zeta invariants of them. This allows us to define a general
technique to obtain the zeta regularized determinant of the Laplace operator on SN+1

k as a
function of the deformation parameter. We apply this technique to the lower cases, N = 1
and 2, giving explicit formulas. Our last result is the computation of the coefficients in
the expansions of the zeta determinants in powers of the deformation parameter.

By Lemma 3.2, the zeta function on SN+1
k is the function defined by the series

ζ(s,�SN+1
1/a
) =

∑

n∈N
N
0

[n(n + N )]−s + 2
∞∑

m=1

∑

n∈NN

[(am + n)(am + n + N )]−s,

when Re(s) > N +1, and by analytic continuation elsewhere. Here n is a positive integer
vector n = (n1, . . . , nN ), and the notation N

N
0 means N × · · · × N − {0, . . . , 0}.

Multidimensional gamma and zeta functions, namely zeta functions where the gen-
eral term is of the form (nT an + bT n + c)−s , where a is a real symmetric matrix of rank
k ≥ 1, b a vector in R

k , c a real number and n an integer vector in Z
k , were originally

introduced by Barnes [3, 4] and Epstein [32, 33] as natural generalizations of the Euler
gamma function. Whenever the sum is on the integers (i.e. n ∈ Z

k), there is a large
symmetry that allows one to express the zeta function by a theta series. Multidimen-
sional theta series have been deeply studied in the literature, and by a generalization of
the Poisson summation formula (see for example [16] XI.2, 3) it is possible to compute
the main zeta invariants for multiple series of this type (see [63, 47, 30, 31 , and 15]
and references there in). The main problem in the present case is that the zeta functions
are associated to series of Dirichlet type, namely the sums are over N

k
0. We lose then
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many symmetries and in particular a formula of Poisson type. Consequently, it is more
difficult to find general results, and different techniques have been introduced to deal
with the specific cases (see for example [12, 13, 18, 29, 54, 55] for simple series or
series that can be reduced to simple series or [15, 46] for multiple linear series). Note in
particular that the case of a double (k = 2) homogeneous quadratic series of Dirichlet
type is much harder. The zeta functions of this type (with integer coefficients) appear
when dealing with the zeta functions of a narrow ideal class for a real quadratic field
as shown by Zagier in [66 and 67], where he also computes the values at non-positive
integers (see also [51, 28, 14, 15], and in particular [58] for the derivative). Beside, we
can overcome this difficulty in the case under study first by reducing the multi-dimen-
sional zeta functions to a sum of 2 dimensional linear and quadratic zeta functions, and
then studying the quadratic one by means of a general method introduced in [59] in
order to deal with non homogeneous zeta functions. Note that, for particular values of
the deformation parameter, the zeta function can be reduced to a sum of zeta functions
of Barnes type [3], and this allows a direct computation of the main zeta invariants [25,
26]. This approach does not work for generic values of the deformation parameter, and
therefore the more sophisticated technique introduced here is necessary.

We present in the next subsection some generalizations of some results of [59] nec-
essary in order to treat the present case, and we give in the following subsections some
applications to the case of some general classes of abstract simple and double zeta func-
tions. As explained hereafter, by means of these two classes of zeta functions, we can
in principle calculate the zeta invariants for the deformed sphere in any dimensions.
Eventually in the last subsections we apply the method to obtain the main zeta invariants
for the zeta functions on the 2 and 3 dimensional deformed spheres.

By the following lemma (see [60 or 59]), we can reduce ζ(s,�SN+1
k
) to a sum of

simple and double zeta functions.

Lemma 4.1. Let f (z) be a regular function of z. Then

∑

n∈NN+1

f (n) =
∞∑

n=0

(
n + N

N

)

f (n),
∑

n∈N
N+1
0

f (n) =
∞∑

n=1

(
n + N

N

)

f (n).

Proposition 4.2. The zeta function associated with the Laplace operator on the N + 1
dimensional deformed sphere is (N ≥ 1)

ζ(s,�SN+1
1/a
) =

∞∑

n=1

(
n + N − 1

N − 1

)

[n(n + N )]−s + 2
∞∑

m=1

∞∑

n=0

(
n + N − 1

N − 1

)

[(am + n)(am + n + N )]−s .

Since
(n+N−1

N−1

) = PN (n) is a polynomial of order N in n, and since given any poly-
nomial PN (n) we have a polynomial QN (n + x) for any given x , such that PN (n) =
QN (n + x) (and we can find explicitly the coefficients of Q as functions on those of P
and x), it is sufficient to consider the two classes of zeta functions

z(s;α, 2, x, p) =
∞∑

n=1

(n + x)α[(n + x)2 + p]−s,
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and

Z(s;α, a, x, p) =
∞∑

m=1

∞∑

n=1

nα[(n + am + x)2 + p]−s .

This will be done in Subsects. 4.2 and 4.3, but first, the next subsection is dedicated
to recall and generalize some results on sequences of spectral type and associated zeta
functions introduced in [59], necessary in the following.

4.1. Sequences of spectral type and zeta invariants. In this subsection we will use some
concepts and results developed in [59], that briefly we recall here. We refer to that work
for further details and complete proofs.

Let T = {λn}∞n=1 be a sequence of positive numbers with unique accumulation point
at infinite, finite exponent s0 and genus q. We associate to T , the heat function

f (t, T ) = 1 +
∞∑

n=1

e−λn t ,

the logarithmic Fredholm determinant

log F(z, T ) = log
∞∏

n=1

(

1 +
z

λn

)

e

∑q
j=1

(−1) j

j
z j

λ
j
n ,

and the zeta function

ζ(s, T ) =
∞∑

n=1

λ−s
n .

The sequence T is called of spectral type if there exists an asymptotic expansion of
the associated heat function for small t in powers of t and powers of t times positive
integer powers of log t . In particular it is said to be a simply regular sequence of spectral
type if the associated zeta function has at most simple poles (see [59] pp. 4 and 9).
Formulas to deal with the zeta invariants for sequences of spectral type are given in [59].
In particular, there are considered non-homogeneous sequences as well. We generalize
the concept of non-homogeneous sequence here, by considering, for any given sequence
of spectral type T0 = {λn}∞n=1, the shifted sequence Td = {λn + d}∞n=1, where d is a
parameter, subject to the unique condition that Re(λn + d) is always positive. We can
prove the following results for a shifted sequence (see [59] Proposition 2.9 and Corollary
2.10 for details).

Lemma 4.3. Let T0 = {λn}∞n=1 be a sequence of finite exponent s0 and genus q, then
the associated shifted sequence Td = {λn + d}∞n=1, with d such that Re(λn + d) > 0 for
all n, is a sequence of finite exponent s0 and genus q. Moreover, T0 is of spectral type if
and only if Td is of spectral type. If T0 is simply regular, so is Td .
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Proposition 4.4. Let T0 = {λn}∞n=1 be a simply regular sequence of spectral type with
finite exponent s0 and genus q, and Td = {λn + d}∞n=1, with d such that Re(λn + d) > 0
for all n, an associated shifted sequence. Then,

ζ(0, Td) = ζ(0, T0) +
q∑

j=1

(−1) j

j
Res1(ζ(s, T0), s = j)d j ,

ζ ′(0, Td) = ζ ′(0, T0)− log F(d, T0) +

+
q∑

j=1

(−1) j

j

[
Res0(ζ(s, T0), s = j) + (γ + ψ( j))Res1(ζ(s, T0), s = j)

]
d j .

Proposition 4.5. Let T0 = {λn}∞n=1 be a simply regular sequence of spectral type with
finite exponent s0 and genus q. Let L0 = {λ2

n}∞n=1, and d such that Re(λn + d) > 0 for
all n. Then,

ζ(0, Ld2) = 1

2

[
ζ(0, Tid) + ζ(0, T−id

]
,

ζ ′(0, Ld2)=ζ ′(0, Tid) + ζ ′(0, T−id)−
[ p

2

]

∑

j=1

(−1) j

j

j∑

k=1

1

2k − 1
Res1(ζ(s, T0), s =2 j)d2 j .

Remark 4.6. Note that the numbers λn in the sequence need not to be different, i.e. the
cases with multiplicity are covered by Propositions 4.4 and 4.5. In particular, assume
the sequence is T0 = {λn}∞n=1, each λn having multiplicity ρn (we cover the case of
a general abstract multiplicity, given by any positive real number). Then, the unique
difficulty can be in defining the exponent of convergence of the sequence. But actually
for our purpose it is sufficient to know the genus, and this can be obtained whenever we
know the asymptotic of λn and ρn for large n. In fact, if λn ∼ nb and ρn ∼ na , then the
general term of the associated zeta function behaves as na−bs , and therefore the genus
is q = [ a+1

b

]
(the integer part).

Some more remarks on these results are in order. First, note that the approach of
considering some general class of abstract sequences and of studying the analytic prop-
erties of the associated spectral functions has been developed by various authors, and in
particular instances of Proposition 4.4 can be found in the literature. The original idea
is probably due to Voros [61], while a good reference for a rigorous and very general
setting is the work of Jorgenson and Lang [41]. However, for our purpose here, the
simpler setting of [59] is more convenient. Second, observe that Proposition 4.5 was
originally proved by Choi and Quine in [18], and also obtained in [25], Eq. (25). In
particular, the reader can see the proof given in [59], as the more rapid route to this result
suggested in [25].

4.2. A class of simple zeta functions. We consider the following class of simple zeta
functions (compare with [57])

z(s;α, β, x, p) =
∞∑

n=1

(n + x)α[(n + x)β + p]−s,
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for Re(s) > 1+α
β

, where α and β are real positive numbers, and x and p are real numbers

subject to the conditions that n + x > 0 and (n + x)β + p > 0 for all n.
Note that different equivalent techniques could be applied to deal with this case;

namely one could use the Plana theorem as in [54], a regularized product like in [18], a
complex integral representation as in [55], or heat-kernel techniques [30, 31].

Proposition 4.7. The function z(s;α, β, x, p) has a regular analytic continuation in the
whole complex s-plane up to simple poles at s = 1+α

β
− j , j = 0, 1, 2, . . . , whenever

these values are not 0,−1,−2, . . . . The origin is a regular point and if 1+α
β

is not a
positive integer

z(0;α, β, x, p) = ζH (−α, x + 1),

and

z′(0;α, β, x, p) = βζ ′
H (−α, x + 1) +

[
α+1
β

]

∑

j=1

(−1) j

j
ζH (β j − α, x + 1)p j +

− log
∞∏

n=1

(

1 +
p

(n + x)β

)(n+x)α

e
(n+x)α

∑
[
α+1
β

]

j=1
(−1) j

j
p j

(n+x)β j ,

while if 1+α
β

is a positive integer

z(0;α, β, x, p) = ζH (−α, x + 1) +
(−1)

α+1
β

α + 1
p
α+1
β ,

and

z′(0;α, β, x, p) = βζ ′
H (−α, x + 1) +

α+1
β

−1
∑

j=1

(−1) j

j
ζH (β j − α, x + 1)p j +

+
(−1)

α+1
β

α+1
β

[

−�(x + 1) +

(

γ +�

(
1 + α

β

))
1

β

]

p
α+1
β +

− log
∞∏

n=1

(

1 +
p

(n + x)β

)(n+x)α

e
(n+x)α

∑
α+1
β

j=1
(−1) j

j
p j

(n+x)β j .

Proof. The result follows applying Proposition 4.4. First, note that the unshifted
sequences is T0 = {(n + x)β}, with multiplicity (n + x)α . By the Remark 4.6, the

sequence has genus q =
[
α+1
β

]
. The associated zeta function is

z(s;α, β, x, 0) = ζH (βs − α, x + 1),

and this clearly shows that T0 is a simply regular sequence of spectral type, and so is Tp

by Lemma 4.3. The unique pole is at s = 1+α
β

and
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Res1

(

z(0;α, β, x, 0), s = 1 + α

β

)

= 1

β
,

Res0

(

z(0;α, β, x, 0), s = 1 + α

β

)

= −ψ(x + 1).

The associated Fredholm determinant is

F(z, T0) =
∞∏

n=1

(

1 +
z

(n + x)β

)(n+x)α

e
(n+x)α

∑q
j=1

(−1) j

j
z j

(n+x)β j .

Next, using the expression given in the proof of Proposition 4.4 we have

z(s;α, β, x, p) =
∞∑

j=0

(−s

j

)

ζH (β(s + j)− α)p j ,

thus we have poles when β(s + j) − α = 1, i.e. s = 1+α
β

− j , j = 0, 1, 2, . . . ,
when ever these values are not 0,−1,−2, . . . , and the residua are easily computed.
To obtain the value at s = 0, it is useful to distinguish two cases (see [57]). In fact,
from the above expression, when s = 0 the unique term that is singular is the one with
β j − α = 1, i.e. j = α+1

β
, that is necessarily a positive integer since α ≥ 0. Now, if α+1

β

is not a positive integer, then we have no integer poles, q =
[
α+1
β

]
	= α+1

β
, and hence

z(0;α, β, x, p) = z(0;α, β, x, 0), and since

Res0 (z(s;α, β, x, 0), s = j) = z( j;α, β, x, 0) = ζH (β j − α, x + 1),

z′(0;α, β, x, p) = z′(0;α, β, x, 0)

+

[
α+1
β

]

∑

j=1

(−1) j

j
Res0 (z(s;α, β, x, 0), s = j) p j − log F(p, T0).

If α+1
β

is a positive integer, we have a pole, q =
[
α+1
β

]
= α+1

β
, and we need to take

in account also the residuum. As we have seen, since the Hurwitz zeta function has only
one pole at s = 1 with residuum 1, all the terms up to the ones with j = 0 and the one
with j = α+1

β
have vanishing residuum, and we obtain

z(0;α, β, x, p) = z(0;α, β, x, 0) +
(−1)

α+1
β

α+1
β

Res1

(

z(s;α, β, x, 0), s = 1 + α

β

)

p
α+1
β ,

and

z′(0;α, β, x, p) = z′(0;α, β, x, 0) +

α+1
β

−1
∑

j=1

(−1) j

j
Res0 (z(s;α, β, x, 0), s = j) p j +

+
(−1)

α+1
β

α+1
β

[

Res0

(

z(s;α, β, x, 0), s = 1 + α

β

)

+

+

(

γ +�

(
1 + α

β

))

Res1

(

z(s;α, β, x, 0), s = 1 + α

β

)]

p
α+1
β − log F(p, T0),

that gives the formula stated in the thesis.
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4.3. A class of double zeta functions. Consider the following class of double zeta func-
tions

Z(s;α, a, x, p) =
∞∑

m,n=1

nα[(am + n + x)2 + p]−s,

for Re(s) > 1 + α, and where x and p are real constants subject to the conditions that
am + n + x > 0 and (am + n + x)2 + p > 0 for all n and m, and α is a non-negative
integer (the case where α is any real number can be treated by similar methods, but is
much more complicated, see [56]).

Remark 4.8. In the more general case

Z(s;α, β, a, x, p) =
∞∑

m,n=1

nα[(am + n + x)β + p]−s,

for Re(s) > 2(1+α)
β

, and where x and p are real constants subject to the conditions that

am + n + x > 0 and (am + n + x)β + p > 0 for all n and m, we would have genus

q =
[

2(1+α)
β

]
by Remark 4.6 since the leading term behaves like nαn−βs/2, but we would

not be able to prove that these are regular sequences of spectral type as in the following
proof of Lemma 4.9.

The sequences appearing in these zeta functions are: S0 = {λm,n = (am + n +
x)2}∞m,n=1 and the associated shifted sequence Sp = {λm,n + p}∞m,n=1, both with multi-
plicity nα . These are sequences with finite exponent and genus q = [1 + α] by Remark
4.6. We first show that Sp is a simply regular sequence of spectral type.

Lemma 4.9. The sequence Sp = {(am + n + x)2 + p}∞m,n=1 is a simply regular sequence
of spectral type.

Proof. By Lemma 4.3, we need to show that there exists an expansion of the desired
type for the heat function

f (t, S0) = 1 +
∞∑

m,n=1

nαe−(am+n+x)2t .

Consider the sequence L = {am+n+x}∞m,n=1, with multiplicity nα , of finite exponent

and genus 2 (since ma + nb ≤ (mn)
ab

a+b ). The associated heat function is

f (t, L) = 1 +
∞∑

m,n=1

nαe−(am+bn+c)t ,

and the associated Fredholm determinant is

F(z, L) =
∞∏

m,n=1

(
1 +

z

am + bn + c

)nα

e
∑2

j=1
(−1) j

j
nα z j

(am+bn+c) j .
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Since

f (t, L) = 1 +
∞∑

m,n=1

nαe−(am+bn+c)t = 1 + e−ct
∞∑

m=1

e−amt
∞∑

n=1

nαe−bnt ,

and we have an expansion of each factor in powers of t (see [57] Sect. 3.1 for the last
sum), it is clear that we have an expansion of the form

f (t, L) =
∞∑

j=0

e j t
δ j .

By Lemma 2.5 of [57], L is simply regular, and hence the unique logarithmic terms
in the expansion of F(z, L) are of the form zk log z, with integer k ≤ 2. Now, consider
the product

F(i z, L)F(−i z, L) =
∞∏

m,n=1

(

1 +
i z

am + bn + c

)nα (

1 − i z

am + bn + c

)nα

×

×e
∑2

j=1
(−1) j

j
nα(i z) j

(am+bn+c) j e
∑2

j=1
(−1) j

j
nα(−i z) j

(am+bn+c) j .

Since i j + (−i) j = 0 for odd j , and −2 when j = 2, this gives

F(i z, L)F(−i z, L) =
∞∏

m,n=1

(

1 +
z2

(am + bn + c)2

)nα

e
1
2

nα z2

(am+bn+c)2 = F(z2, S0),

and we obtain a decomposition of the Fredholm determinant associated to the sequence
S0. This means that log F(z, S0) has an expansion with unique logarithmic terms of
the form zk log z, with integer k ≤ 1, and therefore S0 is a simply regular sequence of
spectral type by Lemma 2.5 of [59].

Lemma 4.9 shows that the sequence appearing in the definition of the function
Z(s;α, a, x, p) = ζ(s, Sp) are such that we can apply Proposition 4.4 in order to obtain
all the desired zeta invariants. For we need explicit knowledge of the zeta invariants of
the sequence S0. This is in the next lemma.

Lemma 4.10. The functionχ(s;α, a, x) defined for real a and x such that am+n+x > 0,
for all m, n ∈ N0, and α a non-negative integer, by the sum

χ(s;α, a, x) =
∞∑

m,n=1

nα(am + n + x)−s,

when Re(s) > 2(α + 1), can be continued analytically to the whole complex plane up to
a finite set of simple poles at s = 1, 2, . . . , α + 2, by means of the following formula:
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χ(s;α, a, x) = 1

2
a−sζH (s, (x + 1)/a + 1) +

a1−s

s − 1
ζH (s − 1, (x + 1)/a + 1) +

+
α∑

j=1

α(α − 1) . . . (α − j + 1)

(s − 1)(s − 2) . . . (s − j − 1)
a j+1−sζH (s − j − 1, (x + 1)/a + 1) +

+ia−s

∞∫

0

(1 + iy)αζH (s, (x + 1 + iy)/a + 1)− (1 − iy)αζH (s, (x + 1 − iy)/a + 1)

e2πy − 1
dy.

In particular, this shows that the point s = 0 is a regular point.

Proof. We apply the Plana theorem as in [54]. Since the general term behaves as nαn−s/2,
we assume Re(s) > 2(α + 1),

χ(s;α, a, x) = 1

2

∞∑

m=1

(am + x + 1)−s +
∞∑

m=1

∞∫

1

tα(am + t + x)−sdt +

+i
∞∑

m=1

∞∫

0

(1 + iy)α(am + x + 1 + iy)−s − (1 − iy)α(am + x + 1 − iy)−s

e2πy − 1
dy.

Recall that α is a non-negative integer, then we can integrate recursively the middle
term obtaining, for α > 0,

∞∫

1

tα(am + t + x)−sdt =
α∑

j=0

α(α − 1) . . . (α − j + 1)

(s − 1)(s − 2) . . . (s − j − 1)
(am + x + 1) j+1−s;

this gives

χ(s;α, a, x) = 1

2
a−s

∞∑

m=1

(m + (x + 1)/a)−s +
a1−s

s − 1
(m + (x + 1)/a)1−s+

+
α∑

j=1

α(α − 1) . . . (α − j + 1)

(s − 1)(s − 2) . . . (s − j − 1)
a j+1−s

∞∑

m=1

(m + (x + 1)/a) j+1−s+

+ia−s
∞∑

m=1

∞∫

0

(1 + iy)α(m + (x + 1 + iy)/a)−s − (1 − iy)α(m + (x + 1 − iy)/a)−s

e2πy − 1
dy,

and, due to uniform convergence of the integral, concludes the proof.

Remark 4.11. We could deal with this kind of double zeta function by applying the
classical integral formula of Hermite as in the case of the Riemann zeta function. This
approach confirms the above results, but it would not give a tractable expression for the
singular part.
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We can now obtain the zeta invariants of the zeta function Z(s;α, a, x, p) for all the
acceptable values of the parameters. This allows us to compute the regularized determi-
nant of the deformed sphere of any dimension, as pointed out at the beginning of this
section. Besides, we will give explicit formulas and results for the low dimensional cases
in the next subsections.

4.4. Zeta determinant on the deformed 2 sphere. By Proposition 4.2, the zeta function
associated to the operator �S2

1/a
is the function defined by the series

ζ(s,�S2
1/a
) =

∞∑

n=1

[n(n + 1)]−s + 2
∞∑

m=1,n=0

[(am + n)(am + n + 1)]−s,

when Re(s) > 2, and by analytic continuation elsewhere. The aim of this section
is to study this zeta function and in particular to obtain a formula for the values of
ζ(0,�S2

1/a
) and ζ ′(0,�S2

1/a
). When a = 1, this reduces to the zeta function on the

2-sphere: ζ(s,�S2
1/a=1

) = ∑∞
n=1(2n + 1)(n2 + n)−s [18, 54, 55]. The zeta function

ζ(s, SS2
1/a
) decomposes as

ζ(s,�S2
1/a
) = z(s; 0, 2, 1/2,−1/4) + 2Z(s; 0, a,−1/2,−1/4),

and we can easily check that the values of the parameters satisfy the condition of defi-
nition of these functions. We provide two equivalent formulas for the zeta determinant
on the deformed 2-sphere, Theorems 4.15 and 4.16. The first is obtained applying Prop-
osition 4.4, the second applying Proposition 4.5. Computations are given in the proofs
of the following lemmas. The first lemma follows by a direct application of Proposition
4.7 and properties of special functions.

Lemma 4.12.

z(0; 0, 2, 1/2,−1/4) = −1,

z′(0; 0, 2, 1/2,−1/4) = − log 2π.

Lemma 4.13.

Z(0; 0, a,−1/2,−1/4) = a

12
+

1

12a
,

Z ′(0; 0, a,−1/2,−1/4) = 1

6

(
1

2a
− a

)

log a+

+ζ ′
H (0, 1/(2a) + 1)− 2aζH (−1, 1/(2a) + 1)− 2aζ ′

H (−1, 1/(2a) + 1)+

+2i

∞∫

0

ζ ′
H (0, (1/2 + iy)/a + 1)− ζ ′

H (0, (1/2 − iy)/a + 1)

e2πy − 1
dy+
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+
1

8a2 ζH (2, 1/(2a) + 1)− 1

4a
(�(1/(2a) + 1) + 1 + log a)+

+
i

4a2

∞∫

0

ζH (2, (1/2 + iy)/a + 1)− ζH (2, (1/2 − iy)/a + 1)

e2πy − 1
dy+

+
∞∏

m,n=1

(

1 − 1

4(am + n − 1/2)2

)

e
1

4(am+n−1/2)2 .

Proof. The function Z(s; 0, a,−1/2,−1/4) is the zeta function associated with the
sequence S−1/4 = {(am +n−1/2)2 −1/4}, all terms with multiplicity 1. By Lemma 4.9,
S−1/4 is a simply regular sequence of spectral type. In order to apply Proposition 4.4,
we need to study the unshifted sequence S0 = {(am + n − 1/2)2}. This sequence has
genus 1, the associate Fredholm determinant is

F(z, S0) =
∞∏

m,n=1

(

1 +
z

(am + n − 1/2)2

)

e
− z
(am+n−1/2)2 ,

and the associated zeta function is ζ(s, S0) = χ(2s; 0, a,−1/2). By Proposition 4.4
and since the genus is 1, we have that

Z(0; 0, a,−1/2,−1/4) = χ(0; 0, a,−1/2) +
1

4
Res1(χ(2s; 0, a,−1/2), s = 1),

and that

Z ′(0; 0, a,−1/2,−1/4) = χ ′(2s; 0, a,−1/2)|s=0

+
1

4
Res0(χ(2s; 0, a,−1/2), s = 1)− log F(−1/4, S0),

and hence we need to compute the values at s = 0 of ζ(s, S0) = χ(2s; 0, 1,−1/2), and
the residua at s = 1. For, we use the formula provided in Lemma 4.10, namely

χ(2s; 0, a,−1/2) = 1

2
a−2sζH (2s, 1/(2a) + 1) +

1

2s − 1
a1−2sζH (2s−1, 1/(2a) + 1)+

+ia−2s

∞∫

0

ζH (2s, (1/2 + iy)/a + 1)− ζH (2s, (1/2 − iy)/a + 1)

e2πy − 1
dy. (1)

We obtain

χ(0; 0, a,−1/2) = 1

2
ζH (0, 1/(2a) + 1)− aζH (−1, 1/(2a) + 1)+

+i

∞∫

0

ζH (0, (1/2 + iy)/a + 1)− ζH (0, (1/2 − iy)/a + 1)

e2πy − 1
dy = a

12
− 1

24a
,
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where we have used [35] 9.531 and 9.611.1. Next, we use Eq. (1) to compute the residua
at the pole s = 1. The unique singular term is the middle one, so we expand the different
factors in it near s = 1, using [35] 9.533.2,

a
a−2s

2s − 1
ζH (2s − 1, 1 + 1/(2a)) = 1

2a

1

s − 1

−1

a
(�(1 + 1/(2a)) + 1 + log a) + O(s − 1).

This gives

Res1(χ(2s; 0, a,−1/2), s = 1) = 1

2a
,

and

Res0(χ(2s; 0, a,−1/2), s = 1) = 1

2a2 ζH (2, 1/(2a) + 1)− 1

a
(1 + log a)+

−1

a
�(1/(2a) + 1) +

i

a2

∞∫

0

ζH (2, (1/2 + iy)/a + 1)− ζH (2, (1/2 − iy)/a + 1)

e2πy − 1
dy.

Last, we compute the derivative:

χ ′(0; 0, a,−1/2) = −2χ(0; 0, a,−1/2) log a+

+ζ ′
H (0, 1/(2a) + 1)− 2aζH (−1, 1/(2a) + 1)− 2aζ ′

H (−1, 1/(2a) + 1)+

+2i

∞∫

0

ζ ′
H (0, (1/2 + iy)/a + 1)− ζ ′

H (0, (1/2 − iy)/a + 1)

e2πy − 1
dy =

= 1

6

(
1

2a
−a

)

log a + �(1/(2a)+1)− 1

2
log 2π+

a

6
+

1

4a
+

1

2
−2aζ ′

H (−1, 1/(2a) + 1)+

+2i

∞∫

0

log
�((1/2 + iy)/a + 1)

�((1/2 − iy)/a + 1)

dy

e2πy − 1
dy.

Collecting, we obtain the thesis.

Lemma 4.14.

Z ′(0; 0, a,−1/2,−1/4) = −
(

a

6
+

1

6a

)

log a − 1

2
log 2π +

1

2
log�(1 +

1

a
)+

+
a

6
+

1

2
+

3

4a
− aζ ′

R(−1)− aζ ′
H (−1, 1 +

1

a
)+

+i

∞∫

0

log
�(1 + i y

a )�(1 + 1
a + i y

a )

�(1 − i y
a )�(1 + 1

a − i y
a )

dy

e2πy − 1
.
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Proof. In the language of Proposition 4.5, we have

L0 = {(am + n + x)2}, Lb2 = {(am + n + x)2 + b2},
S0 = {am + n + x}, Sib = {am + n + x + ib},

where the genus of S0 is p = 2. Therefore, by Proposition 4.5,

Z ′(0; 0, a, x, b2) = ζ ′(0, Lb2) = ζ ′(0, Sib) + ζ ′(0, S−ib))− Res1(ζ(s, S0), s = 2)b2.

Also, we have that

ζ(s, Sib) =
∞∑

m,n=1

(am + n + x + ib)−s = χ(s; 0, a, x + ib),

and therefore, we need information on χ . Use Lemma 4.10. We have, with z = x ± ib,

χ(s; 0, a, z) = 1

2
a−sζH (s,

z + 1

a
+ 1) +

a1−s

s − 1
ζ(s − 1,

z + 1

a
+ 1)+

+ia−s

∞∫

0

ζH (s,
z+1+iy

a + 1)− ζH (s,
z+1−iy

a + 1)

e2πy − 1
dy.

This gives

Res1(χ(s; 0, a, z), s = 2) = 1

a
,

χ(0; 0, a, z) = 1

4
+

a

12
+

1

12a
+

z2

2a
+

z

2a
+

z

2
,

χ ′(0; 0, a, z) = −χ(0; 0, a, z) log a +
1

2
ζ ′

H (0,
z + 1

a
+ 1)− aζH (−1,

z + 1

a
+ 1)+

−aζ ′
H (−1,

z + 1

a
+ 1) + i

∞∫

0

log
�(1 + z+iy+1

a )

�(1 + z−iy+1
a )

dy

e2πy − 1
.

Using the decomposition at the beginning of this subsection and the results in Lemmas
4.12, 4.13 and 4.14 respectively, we can prove the following theorems.

Theorem 4.15.

ζ(0,�S2
1/a
) = −1 +

a

6
+

1

6a
,

ζ ′(0,�S2
1/a
) = −2 log 2π + 1 +

a

3
− 1

3

(

a +
1

a

)

log a + 2 log�(1/(2a) + 1)+
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+
1

4a2 ζH (2, 1/(2a) + 1)− 1

2a
�(1/(2a) + 1)− 4aζ ′

H (−1, 1/(2a) + 1)+

+4i

∞∫

0

log
�((1/2 + iy)/a + 1)

�((1/2 − iy)/a + 1)

dy

e2πy − 1
+

+
i

2a2

∞∫

0

ζH (2, (1/2 + iy)/a + 1)− ζH (2, (1/2 − iy)/a + 1)

e2πy − 1
dy+

−2 log
∞∏

m,n=1

(

1 − 1

4(am + n − 1/2)2

)

e
1

4(am+n−1/2)2 .

Theorem 4.16.

ζ ′(0,�S2
1/a
) = −

(
a

3
+

1

3a

)

log a − 2 log 2π +
a

3
+ 1 +

3

2a
+ log�(1 +

1

a
)+

−2aζ ′
R(−1)− 2aζ ′

H (−1, 1 +
1

a
) + 2i

∞∫

0

log
�(1 + i y

a )�(1 + 1
a + i y

a )

�(1 − i y
a )�(1 + 1

a − i y
a )

dy

e2πy − 1
.

Observe that, although the formula given in Theorem 4.16 looks nicer, it is in fact
less useful than the one given in Theorem 4.15, since convergence of the integral is
much lower than convergence of the infinite product. Note also that the analytic formu-
las obtained in the previous theorems, provide a rigorous answer to the problem studied
in [27], where an attempt to obtain such formulas was performed. In particular, we can
compare the graphs given in [27] Sect. XI (where observe the opposite sign), with the
following one, where ζ ′(0,�S2

1/a
) is plotted using the formula given in Theorem 4.15,

and the relation with the lune angle ω is a = π
ω

.
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4.5. The zeta determinant on the deformed 3 sphere. On the deformed 3-sphere we have
N = 2 and

ζ(s,�S3
1/a
) =

∞∑

n=1

(n + 1)[n(n + 2)]−s + 2
∞∑

m=1

∞∑

n=0

(n + 1)[(am + n)(am + n + 2)]−s .

We can check that this reduces to the usual zeta function on the 3-sphere ζ(s,�S3
1
) =

∑∞
n=1(n + 1)2[n(n + 2)]−s [54, 18], and we can decompose it as follows

ζ(s,�S3
1/a
) = z(s; 1, 2, 1,−1) + 2Z(s; 1, a, 0,−1).

As in the previous subsection, we apply Propositions 4.4 and 4.5 and properties of
special functions to prove the following lemmas. Observe that, in this case, an appli-
cation of Proposition 4.5 gives a simpler formula for z′(0; 1, 2, 1,−1), we thank the
referee for pointing out this fact.

Lemma 4.17.

z(0; 1, 2, 1,−1) = −1,

z′(0; 1, 2, 1,−1) = γ − 1 + 2ζ ′
H (−1, 2)− log

∞∏

n=2

(

1 − 1

n2

)n
e

1
n = 2ζ ′

H (−1, 2) + log 2 − 1.

Remark 4.18. The above result allows to obtain the following interesting formulas for
the Barnes G-function G(z) and the double sine function S(z) (see [3, 53 or 59] for the
definition of the G-function, and [44 or 59] for the multiple sine function):

lim
z→1

G(1 − z)

1 − z
= 4

e
,

lim
z→1

S(π(1 − z))

1 − z
= π

e
.

The proofs of the next lemmas are the same as for Lemmas 4.13 and 4.14. Besides
the increasing difficulty of the calculation and the fact that now the multiplicity is not
trivial (α = 1), the main difference is that a new singular term appears in the unshifted
zeta function, namely applying Lemma 4.10, we obtain the expression

χ(2s; 1, a, 0) = a−2s

2
ζH (2s, 1/a + 1) +

a1−2s

2s − 1
ζH (2s − 1, 1/a + 1)+

+
a2−2s

(2s − 1)(2s − 2)
ζH (2s − 2, 1/a + 1)+

+ia−2s

∞∫

0

(1 + iy)ζH (2s, (1 + iy)/a + 1)− (1 − iy)ζH (2s, (1 − iy)/a + 1)

e2πy − 1
dy

instead of formula (1).
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Lemma 4.19.

Z(0; 1, a, 0,−1) = − 5

24
,

Z ′(0; 1, a, 0,−1) = 3

4
− a

12
+

1

2a
+

5

12
log a − 11

12
log 2π + 2 log�(1/a + 1)+

+
1

2a2 ζH (2, 1/a + 1)− 1

a
�(1 + 1/a)− 2aζ ′

H (−1, 1/a + 1) + a2ζ ′
H (−2, 1/a + 1)+

+2i

∞∫

0

log
�((1 + iy)/a + 1)

�((1 − iy)/a + 1)

dy

e2πy − 1
− 2

∞∫

0

y log |�((1 + iy)/a + 1)|2 dy

e2πy − 1
+

+
i

a2

∞∫

0

ζH (2, (1 + iy)/a + 1)− ζH (2, (1 − iy)/a + 1)

e2πy − 1
dy+

− 1

a2

∞∫

0

y
ζH (2, (1 + iy)/a + 1) + ζH (2, (1 − iy)/a + 1)

e2πy − 1
dy+

− log
∞∏

m,n=1

(

1 − 1

(am + n)2

)n

e
n

(am+n)2 .

Lemma 4.20.

Z ′(0; 1, a, 0,−1) = 5

12
log a − 1 − a

12
− 5

12
log 2π +

1

2
log�(

2

a
+ 1)+

−a

(

ζ ′
R(−1) + ζ ′

H (−1,
2

a
+ 1)

)

+
a2

2

(

ζ ′
R(−2) + ζ ′

H (−2,
2

a
+ 1)

)

+

+i

∞∫

0

log
�(1 + i y

a )�(1 + 2+iy
a )

�(1 − i y
a )�(1 + 2−iy

a )

dy

e2πy − 1
+

−
∞∫

0

y log
πy

ashπy
a

�(1 +
2 + iy

a
)�(1 +

2 − iy

a
)

dy

e2πy − 1
.

Using the decomposition at the beginning of this subsection and the results in Lemmas
4.17, 4.19 and 4.20 we can prove the following theorems.
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Theorem 4.21.

ζ(0,�S3
1/a
) = −1,

ζ ′(0,�S3
1/a
) = γ − 1 + 2ζ ′

H (−1, 2)− log
∞∏

n=2

(

1 − 1

n2

)n

e
1
n +

+
3

2
− a

6
+

1

a
+

5

6
log a − 11

6
log 2π + 4 log�(1/a + 1)+

+
1

a2 ζH (2, 1/a + 1)− 2

a
�(1 + 1/a)− 4aζ ′

H (−1, 1/a + 1) + 2a2ζ ′
H (−2, 1/a + 1)+

+4i

∞∫

0

(1 + iy) log�((1 + iy)/a + 1)− (1 − iy) log�((1 − iy)/a + 1)

e2πy − 1
dy+

+
2i

a2

∞∫

0

(1 + iy)ζH (2, (1 + iy)/a + 1)− (1 − iy)ζH (2, (1 − iy)/a + 1)

e2πy − 1
dy+

−2 log
∞∏

m,n=1

(

1 − 1

(am + n)2

)n

e
n

(am+n)2 .

Theorem 4.22.

ζ ′(0,�S3
1/a
) = log 2 + 2ζ ′

R(−1)− 1 +
5

6
log a − 2 − a

6
− 5

6
log 2π + log�(

2

a
+ 1)+

−2a

(

ζ ′
R(−1) + ζ ′

H (−1,
2

a
+ 1)

)

+ a2
(

ζ ′
R(−2) + ζ ′

H (−2,
2

a
+ 1)

)

+

+2i

∞∫

0

log
�(1+i y

a )�(1+ 2+iy
a )

�(1−i y
a )�(1+ 2−iy

a )

dy

e2πy −1
−2

∞∫

0

y log
πy�(1+ 2+iy

a )�(1+ 2−iy
a )

ashπy
a

dy

e2πy −1
.

4.6. Expansions. In this subsection we give explicit formulas and numerical values of
the first coefficients appearing in the expansions of the determinants of the Laplace
operator on the 2 and 3 dimensional deformed sphere SN

k for small deformations of the
parameter k = 1 − δ, with small positive δ. We first state a lemma that allows to deal
with the expansion of the values of the zeta function, and thus justify the formal series
expansion of all the functions appearing in Theorems 4.15 and 4.21 up to the infinite
products, but the last can be treated directly. The proof of Lemma 4.23 follows by the
same argument as the one used in the proof of Proposition 4.4.

Lemma 4.23. Let x, q and δ be real with 0 ≤ δ ≤ 1, then for all Re(s) > −2 we have
the expansion

ζH (s, 1 + x + qδ)) = ζH (s, 1 + x)− sζH (s + 1, 1 + x)qδ +
s(s + 1)

2
ζH (s + 2, 1 + x)q2δ2 + O(δ3),
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and

ζ ′
H (s, 1 + x + qδ)) = ζ ′

H (s, 1 + x)− (
ζH (s + 1, 1 + x) + sζ ′

H (s + 1, 1 + x)
)

qδ+

+

((

s +
1

2

)

ζH (s + 2, 1 + x) +
s(s + 1)

2
ζ ′

H (s + 2, 1 + x)

)

q2δ2 + O(δ3),

where note that the coefficients of the second and third term in the second formula are
defined as limits.

Proposition 4.24. For a = 1 + δ + O(δ2),

ζ ′(0,�S2
1−δ
) = ζ ′(0,�S2

1
) + Z2δ + O(δ2),

where

ζ ′(0,�S2
1
) = 4ζ ′

H (−1)− 1

2
=

= − log 2π − 2

3
+
π

8
+
γ

2
− 4ζ ′

H (−1, 1/2) +
i

2

∞∫

0

� ′(3/2 + iy)−� ′(3/2 − iy)

e2πy − 1
dy+

+4i

∞∫

0

log
�(3/2 + iy)

�(3/2 − iy)

dy

e2πy − 1
− 2 log

∞∏

m,n=1

(

1 − 1

4(m + n + 1/2)2

)

e
1

4(m+n+1/2)2

= −1.161684575,

Z2 = −1

3
+
γ

2
− π2

8
+

7

4
ζR(3)− 4ζ ′

H (−1, 1/2) + 2π

∞∫

0

tanh πy

e2πy − 1
dy+

+4

∞∫

0

y
�(1/2 + iy) +�(1/2 − iy)

e2πy − 1
dy +

1

2

∞∫

0

y
� ′′(3/2 + iy) +� ′(3/2 − iy)

e2πy − 1
dy+

− i

4

∞∫

0

� ′′(3/2 + iy)−� ′(3/2 − iy)

e2πy − 1
dy − 4

∞∑

j=2

1

4 j

∞∑

m,n=1

m

(m + n + 1/2)2 j+1 =

= 0.7116523492.

Corollary 4.25.

det�S2
1−δ

= det�S2
1

− Z2det�S2
1
δ + O(δ2) = 3.195311305 − 2.273950797δ + O(δ2).
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Proposition 4.26. For a = 1 + δ + O(δ2),

ζ ′(0,�S3
1−δ
) = ζ ′(0,�S3

1
) + Z3δ + O(δ2),

where

ζ ′(0,�S3
1
) = 2ζ ′

R(−2) + 2ζ ′
R(0) + log 2 =

= 3γ − 5

3
− 2ζ ′

R(−1)− 11

6
log(2π) +

π2

6
+ 2ζ ′

R(−2)− log
∞∏

n=2

(

1 − 1

n2

)n

e
1
n +

+4i

∞∫

0

log
�(2 + iy)

�(2 − iy)

dy

e2πy − 1
− 4

∞∫

0

y log |�(2 + iy)|2 dy

e2πy − 1
+

+2i

∞∫

0

ζH (2, 2 + iy)− ζH (2, 2 − iy)

e2πy − 1
dy − 2

∞∫

0

y
ζH (2, 2 + iy) + ζH (2, 2 − iy)

e2πy − 1
dy+

= −2 log
∞∏

m,n=1

(

1 − 1

(m + n)2

)n

e
n

(m+n)2 = −1.205626800,

Z3 = −1

2
+ 2γ + 2ζR(3)− 8ζ ′

R(−1)− 2 log(2π) + 4ζ ′
R(−2)+

−4i

∞∫

0

(1 + iy)2�(2 + iy)− (1 − iy)2�(2 − iy)

e2πy − 1
dy+

−4i

∞∫

0

(1 + iy)� ′(2 + iy)− (1 − iy)� ′(2 − iy)

e2πy − 1
dy+

−2i

∞∫

0

(1+iy)2� ′′(2 + iy)− (2 − iy)2� ′′(2−iy)

e2πy − 1
dy +

3

2
− π2

9
=0.6666666661= 2

3
.

Corollary 4.27.

det�S3
1−δ

= det�S3
1

− Z3det�S3
1
δ + O(δ2) = 3.338845845 − 2.225897228δ + O(δ2).
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